【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點(diǎn).

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

【答案】(1)(2)均見解析.

【解析】試題分析:(1)連結(jié)AC,交BDO,連結(jié)OE,EPA的中點(diǎn),利用三角形中位線的性質(zhì),可知OE∥PC,利用線面平行的判定定理,即可得出結(jié)論;

2)先證明PA⊥DE,再證明PA⊥OE,可得PA⊥平面BDE,從而可得平面BDE⊥平面PAB

證明:(1)連結(jié)AC,交BDO,連結(jié)OE

因?yàn)?/span>ABCD是平行四邊形,所以OA=OC2分)

因?yàn)?/span>E為側(cè)棱PA的中點(diǎn),所以OE∥PC4分)

因?yàn)?/span>PC平面BDE,OE平面BDE,所以PC∥平面BDE6分)

2)因?yàn)?/span>EPA中點(diǎn),PD=AD,所以PA⊥DE8分)

因?yàn)?/span>PC⊥PA,OE∥PC,所以PA⊥OE

因?yàn)?/span>OE平面BDEDE平面BDE,OE∩DE=E

所以PA⊥平面BDE12分)

因?yàn)?/span>PA平面PAB,所以平面BDE⊥平面PAB14分)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知有窮數(shù)列:,,,……,的各項(xiàng)均為正數(shù),且滿足條件:

;.

(1)若,,求出這個(gè)數(shù)列;

(2)若,求的所有取值的集合;

(3)若是偶數(shù),求的最大值(用表示).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】某高中有高一新生500名,分成水平相同的兩類教學(xué)實(shí)驗(yàn),為對比教學(xué)效果,現(xiàn)用分層抽樣的方法從兩類學(xué)生中分別抽取了40人,60人進(jìn)行測試

1)求該學(xué)校高一新生兩類學(xué)生各多少人?

2)經(jīng)過測試,得到以下三個(gè)數(shù)據(jù)圖表:

175分以上兩類參加測試學(xué)生成績的莖葉圖

2100名測試學(xué)生成績的頻率分布直方圖

下圖表格:100名學(xué)生成績分布表:

先填寫頻率分布表中的六個(gè)空格,然后將頻率分布直方圖(圖2)補(bǔ)充完整;

該學(xué)校擬定從參加考試的79分以上(含79分)的類學(xué)生中隨機(jī)抽取2人代表學(xué)校參加市比賽,求抽到的2人分?jǐn)?shù)都在80分以上的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知橢圓的中心在坐標(biāo)原點(diǎn),左、右焦點(diǎn)分別在軸上,離心率為,在其上有一動點(diǎn)到點(diǎn)距離的最小值是1.作一個(gè)平行四邊形,頂點(diǎn)都在橢圓上,如圖所示.

)求橢圓的方程;

)判斷能否為菱形,并說明理由.

)當(dāng)的面積取到最大值時(shí),判斷的形狀,并求出其最大值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】設(shè)p:實(shí)數(shù)x滿足,其中,命題實(shí)數(shù)滿足

|x-3|≤1 .

(1)若為真,求實(shí)數(shù)的取值范圍;

(2)若的充分不必要條件,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】如圖(1)是一個(gè)水平放置的正三棱柱, 是棱的中點(diǎn),正三棱柱的主視圖如圖(2).

(1)圖(1)中垂直于平面的平面有哪幾個(gè)(直接寫出符合要求的平面即可,不必說明或證明)

(2)求正三棱柱的體積;

(3)證明: 平面.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】《九章算術(shù)》是我國古代數(shù)學(xué)成就的杰出代表,其中《方田》章有弧田面積計(jì)算問題,計(jì)算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計(jì)算公

式為:弧田面積=,弧田是由圓。ê喎Q為弧田弧)和以圓

弧的兩端為頂點(diǎn)的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧

田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧

田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計(jì)算公式算得該

弧田的面積為平方米,則cos∠AOB= ( )

A. B. C. D.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】已知函數(shù),

1若曲線處的切線方程為,求實(shí)數(shù)的值;

2設(shè),若對任意兩個(gè)不等的正數(shù),,都有恒成立,求實(shí)數(shù)的取值范圍;

3若在上存在一點(diǎn),使得成立,求實(shí)數(shù)的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

【題目】知函數(shù).

討論的單調(diào)性;

成立,證明:當(dāng)時(shí),

查看答案和解析>>

同步練習(xí)冊答案