【題目】《九章算術(shù)》是我國古代數(shù)學成就的杰出代表,其中《方田》章有弧田面積計算問題,計算術(shù)曰:以弦乘矢,矢又自乘,并之,二而一.其大意是,弧田面積計算公

式為:弧田面積=,弧田是由圓。ê喎Q為弧田弧)和以圓

弧的兩端為頂點的線段(簡稱為弧田弦)圍成的平面圖形,公式中“弦”指的是弧

田弦的長,“矢”等于弧田弧所在圓的半徑與圓心到弧田弦的距離之差.現(xiàn)有一弧

田,其弦長AB等于6米,其弧所在圓為圓O,若用上述弧田面積計算公式算得該

弧田的面積為平方米,則cos∠AOB= ( )

A. B. C. D.

【答案】A

【解析】如圖,由題意可得:AB=6,

弧田面積S=(弦×+2)=(6×+2)=平方米.

解得矢=1,或矢=﹣7(舍),

設(shè)半徑為r,圓心到弧田弦的距離為d,

,解得d=4,r=5,

cosAOD=,

cosAOB=2cos2AOD﹣1=﹣1=

故選:D.

練習冊系列答案
相關(guān)習題

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面是菱形,且.

是棱的中點,平面與棱交于點.

1求證:;

2,且平面平面,求平面與平面所成的銳二面角的余弦值.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,四棱錐中, 側(cè)面為等邊三角形, ,

(1)證明: ;

(2)求二面角的平面角的正弦值。

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖,在四棱錐中,底面為平行四邊形, 為側(cè)棱的中點.

(Ⅰ)求證: ∥平面

(Ⅱ)若,,

求證:平面平面

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知,.

1)求當時,的值域;

2)若函數(shù)內(nèi)有且只有一個零點,求的取值范圍.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】某大學餐飲中心為了了解新生的飲食習慣,利用簡單隨機抽樣的方法在全校一年級學生中進行了抽樣調(diào)查,調(diào)查結(jié)果如下表所示:

喜歡甜品

不喜歡甜品

合計

南方學生

60

20

80

北方學生

10

10

20

合計

70

30

100

(1)根據(jù)表中數(shù)據(jù),問是否有95%的把握認為“南方學生和北方學生在選用甜品的飲食習慣方面有差異”;

(2)根據(jù)(1)的結(jié)論,你能否提出更好的調(diào)查方法來了解該校大學新生的飲食習慣,說明理由.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】選修4-4:坐標系與參數(shù)方程

在平面直角坐標系中,以為極點,軸的非負半軸為極軸建立的極坐標系中,直線的極坐標方程為,曲線的參數(shù)方程為

1寫出直線及曲線的直角坐標方程;

2過點平行于直線的直線與曲線交于、兩點,若,求點軌跡的直角坐標方程.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】如圖所示,在四棱錐中,四邊形為矩形,為等腰三角形,,平面平面,且,,,分別為的中點.

1)證明:平面;

2)證明:平面平面

3)求四棱錐的體積.

查看答案和解析>>

科目:高中數(shù)學 來源: 題型:

【題目】已知拋物線的焦點為,拋物線上橫坐標為的點到拋物線頂點的距離與該點到拋物線準線的距離相等。

(1)求拋物線的方程;

(2)設(shè)直線與拋物線交于兩點,若,求實數(shù)的值。

查看答案和解析>>

同步練習冊答案