某地區(qū)試行高考考試改革:在高三學(xué)年中舉行5次統(tǒng)一測(cè)試,學(xué)生如果通過(guò)其中2次測(cè)試即可獲得足夠?qū)W分升上大學(xué)繼續(xù)學(xué)習(xí),不用參加其余的測(cè)試,而每個(gè)學(xué)生最多也只能參加5次測(cè)試.假設(shè)某學(xué)生每次通過(guò)測(cè)試的概率都是
1
3
,每次測(cè)試通過(guò)與否互相獨(dú)立.規(guī)定:若前4次都沒(méi)有通過(guò)測(cè)試,則第5次不能參加測(cè)試.
(Ⅰ)求該學(xué)生考上大學(xué)的概率.
(Ⅱ)如果考上大學(xué)或參加完5次測(cè)試就結(jié)束,記該生參加測(cè)試的次數(shù)為ξ,求P(ξ>3).
考點(diǎn):離散型隨機(jī)變量的期望與方差
專(zhuān)題:概率與統(tǒng)計(jì)
分析:(Ⅰ)記“該生考上大學(xué)”的事件為事件A,其對(duì)立事件為
.
A
,利用對(duì)立事件概率的計(jì)算公式能求出該學(xué)生考上大學(xué)的概率.
(Ⅱ)該生參加測(cè)試次數(shù)ξ的可能取值為2,3,4,5.P(ξ>3)=P(ξ=4)+P(ξ=5),由此能求出結(jié)果.
解答: 解:(Ⅰ)記“該生考上大學(xué)”的事件為事件A,
其對(duì)立事件為
.
A

P(
.
A
)=
C
1
4
(
1
3
)(
2
3
)3(
2
3
)+(
2
3
)4=
64
243
+
16
81
=
112
243

P(A)=1-P(
.
A
)=1-
112
243
=
131
243
.…(6分)
(Ⅱ)該生參加測(cè)試次數(shù)ξ的可能取值為2,3,4,5.
P(ξ=4)=
C
1
3
1
3
•(
2
3
)2
1
3
+(
2
3
)4=
4
27
+
16
81
=
28
81

P(ξ=5)=
C
1
4
•(
1
3
)•(
2
3
)3=
32
81

∴P(ξ>3)=P(ξ=4)+P(ξ=5)=
20
27
.…(12分)
點(diǎn)評(píng):本題考查概率的求法,考查離散型隨機(jī)變量的分布列和數(shù)學(xué)期望的求法,解題時(shí)要認(rèn)真審題,是中檔題.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來(lái)源: 題型:

在△ABC中,a﹑b﹑c分別為內(nèi)角A﹑B﹑C的對(duì)邊,a上的高為h,且a=3h,則
c
b
+
b
c
的最大值為( 。
A、
5
B、
13
C、2
D、
15

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

若關(guān)于的方程x2-(m-1)x+2-m=0的兩根為正實(shí)數(shù),則( 。
A、m≤-1-2
2
或m≥-1+2
2
B、1<m<2
C、m≥2
2
-1
D、-1+2
2
≤m<2

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知f(x)=
x
2x+1
,數(shù)列{an}的首項(xiàng)a1=1,an+1=f(an)(n∈N*).
(I)證明數(shù)列{
1
an
}是等差數(shù)列;
(Ⅱ)設(shè)bn=an•an+1,求數(shù)列{bn}的前10項(xiàng)和S10

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

設(shè)
e1
,
e2
是二個(gè)不共線(xiàn)向量,知
AB
=2
e1
-8
e2
,
CB
=
e1
+3
e2
,
CD
=2
e1
-
e2

(1)證明:A、B、D三點(diǎn)共線(xiàn)
(2)若
BF
=3
e1
-k
e2
,且B、D、F三點(diǎn)共線(xiàn),求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C:
x2
a2
+
y2
b2
=1(a>b>0)離心率為
2
2
,且曲線(xiàn)上的一動(dòng)點(diǎn)P到右焦點(diǎn)的最短距離為
2
-1.
(1)求橢圓C的方程;
(2)過(guò)點(diǎn)M(0,-
1
3
)的動(dòng)直線(xiàn)l交橢圓C于A、B兩點(diǎn),試問(wèn):在坐標(biāo)平面上是否存在一個(gè)定點(diǎn)T,使得無(wú)論l如何轉(zhuǎn)動(dòng),以AB為直徑的圓恒過(guò)定點(diǎn)T?若存在,求出點(diǎn)T的坐標(biāo);若不存在,請(qǐng)說(shuō)明理由.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知空間中不共面的四個(gè)點(diǎn)A、B、C、D,每2個(gè)點(diǎn)之間均可連一條線(xiàn)段.
(Ⅰ)任意取出三條線(xiàn)段中.求A、B、C、D四個(gè)點(diǎn)均在這三條線(xiàn)段的端點(diǎn)中的概率.
(Ⅱ)任意取出三條線(xiàn)段中,設(shè)含有點(diǎn)A的線(xiàn)段的條數(shù)為隨機(jī)變量X,求X的分布列及均值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

已知橢圓C的中心在原點(diǎn)O,其右焦點(diǎn)為F(1,0),長(zhǎng)軸長(zhǎng)為4.
(1)求橢圓C的方程;
(2)斜率為1的直線(xiàn)l經(jīng)過(guò)點(diǎn)F,交橢圓C于M,N兩點(diǎn),P為橢圓位于第四象限上一點(diǎn),且OP⊥MN,求四邊形OMPN的面積.

查看答案和解析>>

科目:高中數(shù)學(xué) 來(lái)源: 題型:

為了讓學(xué)生了解更多“奧運(yùn)會(huì)”知識(shí),某中學(xué)舉行了一次“奧運(yùn)知識(shí)競(jìng)賽”,共有800名學(xué)生參加了這次競(jìng)賽.為了解本次競(jìng)賽成績(jī)情況,從中抽取了部分學(xué)生的成績(jī)(得分均為整數(shù),滿(mǎn)分為100分)進(jìn)行統(tǒng)計(jì).請(qǐng)你根據(jù)尚未完成并有局部污損的頻率分布表,解答下列問(wèn)題:
分組頻數(shù)頻率
60.5~70.50.16
70.5~80.510
80.5~90.5180.36
90.5~100.5
合計(jì)
(1)若用系統(tǒng)抽樣的方法抽取50個(gè)樣本,現(xiàn)將所有學(xué)生隨機(jī)地編號(hào)為000,001,002,…,799,試寫(xiě)出第二組第一位學(xué)生的編號(hào);
(2)填充頻率分布表的空格(將答案直接填在表格內(nèi)),并作出頻率分布直方圖;
(3)若成績(jī)?cè)?5.5~95.5分的學(xué)生為二等獎(jiǎng),問(wèn)參賽學(xué)生中獲得二等獎(jiǎng)的學(xué)生約為多少人?

查看答案和解析>>

同步練習(xí)冊(cè)答案