將一枚均勻的硬幣連續(xù)拋擲四次,求:
(1)恰好出現(xiàn)兩次正面向上的概率;
(2)恰好出現(xiàn)三次正面朝上的概率;
(3)至少出現(xiàn)一次正面朝上的概率.
考點(diǎn):n次獨(dú)立重復(fù)試驗(yàn)中恰好發(fā)生k次的概率,古典概型及其概率計(jì)算公式
專題:概率與統(tǒng)計(jì)
分析:利用n次獨(dú)立重復(fù)試驗(yàn)中事件A恰好發(fā)生k的概率計(jì)算公式求解.
解答: 解:(1)恰好出現(xiàn)兩次正面向上的概率:
p1=
C
2
4
(
1
2
)2(
1
2
)2
=
3
8

(2)恰好出現(xiàn)三次正面朝上的概率:
p2=
C
3
4
(
1
2
)3
1
2
=
1
4

(3)至少出現(xiàn)一次正面朝上的概率:
p3=1-
C
0
4
1
2
4=
15
16
點(diǎn)評:本題考查概率的求法,解題時要認(rèn)真審題,是基礎(chǔ)題.
練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,∠A=45°,∠B=30°,∠A所對的邊為
2
,則∠B所對的邊為( 。
A、1
B、
2
C、
3
D、2

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an}為等差數(shù)列,且a2=-4,S7=0
(1)求數(shù)列{an}的通項(xiàng)公式;
(2)若等比數(shù)列{bn}滿足b1=-4,b2=a1+a2+a3,求數(shù)列{bn}的前n項(xiàng)和Tn

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如果函數(shù)g(x)滿足:對任意實(shí)數(shù)m,n均有g(shù)(mn+1)-g(m)g(n)=2-g(n)-m成立,那么稱g(x)是“次線性”函數(shù).若“次線性”函數(shù)f(x)滿足f(0)=1,且兩正數(shù)x,y使得點(diǎn)(x2-1,3-2xy)在f(x)的圖象上,則log 
1
2
(x+y)-log4x的最大值為
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知函數(shù)y=f(x)在定義域[-1,1]上是奇函數(shù),又是減函數(shù).
(1)求證:對任意x1、x2∈[-1,1],有[f(x1)+f(x2)]•(x1+x2)≤0;
(2)若f(2-a2)>0,求實(shí)數(shù)a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

為豐富某企業(yè)職工的業(yè)余生活,現(xiàn)準(zhǔn)備一次聯(lián)歡晚會猜獎活動,參與者先后回答兩個相互獨(dú)立的題目A與B,正確回答A可獲得獎金a元,正確回答B(yǎng)可獲得獎金b元.活動規(guī)定;參與者可以任意選擇回答問題 順序,如果第一問題回答錯誤,則該參與者猜獎活動中止.且假設(shè)你答對問題A,B的概率分別為
1
4
,  
1
6

(Ⅰ)若a=100,b=200,求參與者在該次活動中先回答問題A再回答問題B所獲得金額的期望值;
(Ⅱ)若a∈[60,90],b∈[100,200],且只考慮獲獎金額期望值的大小,為了獲得更多的獎金,求選擇先回答題B再回答題A的概率.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知F1、F2是橢圓
x2
25
+
y2
9
=1的兩個焦點(diǎn),P是橢圓上一點(diǎn).
(1)寫出橢圓的焦點(diǎn)坐標(biāo),頂點(diǎn)坐標(biāo),長軸長,短軸長和離心率;
(2)求△PF1F2的周長;
(3)若∠F1PF2=60°,求△PF1F2的面積;
(4)若PF1⊥PF2,求點(diǎn)P的坐標(biāo).

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

如圖,直線y=kx分拋物線y=x-x2與x軸所圍圖形為面積相等的兩部分,求k的值.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

解不等式:|x+1|-|x-2|<1.

查看答案和解析>>

同步練習(xí)冊答案