已知數(shù)列{an}的前n項(xiàng)和公式為Sn=
1
2
×3n+1-
3
2

(1)求數(shù)列{an}的通項(xiàng)公式;
(2)令bn=log3
an
81
,求數(shù)列 {|bn|}的前n項(xiàng)和Tn(其中,n≥5).
考點(diǎn):數(shù)列的求和,數(shù)列的函數(shù)特性
專題:函數(shù)的性質(zhì)及應(yīng)用,等差數(shù)列與等比數(shù)列
分析:(1)利用an=
S1,n=1
Sn-Sn-1,n≥2
求解.
(2)bn=log3
an
81
=log3
3n
81
=n-4,由此能求出數(shù)列 {|bn|}的前n項(xiàng)和Tn(其中,n≥5).
解答: 解:(1)∵Sn=
1
2
×3n+1-
3
2
,
∴當(dāng)n=1時(shí),a1=S1=
1
2
×32-
3
2
=3,
當(dāng)n≥2時(shí),an=Sn-Sn-1=(
1
2
×3n+1-
3
2
)-(
1
2
×3n+2-
3
2
)=3n
當(dāng)n=1時(shí),上式成立,
∴an=3n
(2)bn=log3
an
81
=log3
3n
81
=n-4,
令bn≥0,即n-4≥0,得n≥4,
即第四項(xiàng)開始各項(xiàng)均非負(fù),
∴當(dāng)n≥5時(shí),Tn=3+2+1+0+
(n-4)[1+(n-4)]
2

=
1
2
n2-
7
2
n+12
點(diǎn)評(píng):本題考查數(shù)列的通項(xiàng)公式和前n項(xiàng)絕對(duì)值的和的求法,解題時(shí)要注意對(duì)數(shù)性質(zhì)的合理運(yùn)用.
練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:

如圖,設(shè)A是圓x2+y2=6上的動(dòng)點(diǎn),點(diǎn)B是A在x軸上投影,M為AB上一點(diǎn),且|MB|=
3
3
|AB|.當(dāng)A在圓上運(yùn)動(dòng)時(shí),點(diǎn)M的軌跡為曲線G.過點(diǎn)(m,0)(m>
6
)且傾斜角為
6
的直線l交曲線G于C,D兩點(diǎn).
(1)求曲線G的方程;
(2)若點(diǎn)F是曲線G的右焦點(diǎn)且∠CFD∈[
π
3
,
π
2
],求m的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

下面四個(gè)推導(dǎo)過程符合演繹推理三段論形式且推理正確的是( 。
A、大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π丌是無理數(shù);結(jié)論:π是無限不循環(huán)小數(shù)
B、大前提:無限不循環(huán)小數(shù)是無理數(shù);小前提:π是無限不循環(huán)小數(shù);結(jié)論:π是無理數(shù)
C、大前提:π是無限不循環(huán)小數(shù);小前提:無限不循環(huán)小數(shù)是無理數(shù);結(jié)論:π是無理數(shù)
D、大前提:π是無限不循環(huán)小數(shù);小前提:π是無理數(shù);結(jié)論:無限不循環(huán)小數(shù)是無理數(shù)

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

已知{an},{bn} 均為等差數(shù)列,前n項(xiàng)和分別為Sn,Tn
(1)若平面內(nèi)三個(gè)不共線向量
OA
,
OB
,
OC
滿足
OC
=a3
OA
+a15
OB
,且A,B,C三點(diǎn)共線.是否存在正整數(shù)n,使Sn為定值?若存在,請(qǐng)求出此定值;若不存在,請(qǐng)說明理由;
(2)若對(duì) n∈N+,有 
Sn
Tn
=
31n+101
n+3
,求使 
an
bn
為整數(shù)的正整數(shù)n的集合.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=ax3-3x2+1在區(qū)間[
1
2
,2]上存在唯一零點(diǎn),則實(shí)數(shù)a取值范圍
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

與向量
a
=(
7
2
,
1
2
)及
b
=(
1
2
,-
7
2
)的夾角相等的單位向量是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c,已知∠C=60°,a+b=λc(1<λ<
3
),則∠A的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

函數(shù)f(x)=x3+ax-2在區(qū)間(-1,+∞)上是增函數(shù),則實(shí)數(shù)a的取值范圍是
 

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:

某班5名學(xué)生的數(shù)學(xué)和物理成績(jī)?nèi)绫恚?br />
  學(xué)生
學(xué)科
ABCDE
數(shù)學(xué)成績(jī)(x)8876736663
物理成績(jī)(y)7865716461
(1)畫出散點(diǎn)圖;
(2)求物理成績(jī)y對(duì)數(shù)學(xué)成績(jī)x的線性回歸方程;
(3)一名學(xué)生的數(shù)學(xué)成績(jī)是96分,試預(yù)測(cè)他的物理成績(jī).

查看答案和解析>>

同步練習(xí)冊(cè)答案