【題目】由四棱柱截去三棱錐后得到的幾何體如圖所示,四邊形是邊長為的正方形,為與的交點(diǎn),為的中點(diǎn),平面.
(Ⅰ)證明:平面;
(Ⅱ)若直線與平面所成的角為,求線段的長.
【答案】(Ⅰ)證明見解析;(Ⅱ).
【解析】
(Ⅰ)取的中點(diǎn),連接、,證明四邊形為平行四邊形,可得出,再利用線面平行的判定定理可證明出平面;
(Ⅱ)以點(diǎn)為坐標(biāo)原點(diǎn),、所在直線分別為、軸建立空間直角坐標(biāo)系,設(shè),計(jì)算出平面的一個法向量,利用直線與平面所成的角為,計(jì)算出的值,進(jìn)而得解.
(Ⅰ)取的中點(diǎn),連接、,
由于為四棱柱,所以,且,
四邊形為平行四邊形,則且,
、分別為、的中點(diǎn),所以,且,
因此四邊形為平行四邊形,所以.
又平面,平面,所以平面;
(Ⅱ)如圖,建立空間直角坐標(biāo)系,設(shè),
易知、、、,從而可得.
設(shè)平面的法向量為,
又,,故有,解得,
可取.
由題意得,
解得,即線段的長為.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:高中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,已知拋物線的焦點(diǎn)為,準(zhǔn)線與軸的交點(diǎn)為.過點(diǎn)的直線與拋物線相交于、兩點(diǎn),、分別與軸相交于、兩點(diǎn),當(dāng)軸時,.
(1)求拋物線的方程;
(2)設(shè)的面積為,面積為,求的取值范圍.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】某健身機(jī)構(gòu)統(tǒng)計(jì)了去年該機(jī)構(gòu)所有消費(fèi)者的消費(fèi)金額(單位:元),如下圖所示:
(1)將去年的消費(fèi)金額超過 3200 元的消費(fèi)者稱為“健身達(dá)人”,現(xiàn)從所有“健身達(dá)人”中隨機(jī)抽取 2 人,求至少有 1 位消費(fèi)者,其去年的消費(fèi)金額超過 4000 元的概率;
(2)針對這些消費(fèi)者,該健身機(jī)構(gòu)今年欲實(shí)施入會制,詳情如下表:
會員等級 | 消費(fèi)金額 |
普通會員 | 2000 |
銀卡會員 | 2700 |
金卡會員 | 3200 |
預(yù)計(jì)去年消費(fèi)金額在內(nèi)的消費(fèi)者今年都將會申請辦理普通會員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會申請辦理銀卡會員,消費(fèi)金額在內(nèi)的消費(fèi)者都將會申請辦理金卡會員. 消費(fèi)者在申請辦理會員時,需-次性繳清相應(yīng)等級的消費(fèi)金額.該健身機(jī)構(gòu)在今年底將針對這些消費(fèi)者舉辦消費(fèi)返利活動,現(xiàn)有如下兩種預(yù)設(shè)方案:
方案 1:按分層抽樣從普通會員, 銀卡會員, 金卡會員中總共抽取 25 位“幸運(yùn)之星”給予獎勵: 普通會員中的“幸運(yùn)之星”每人獎勵 500 元; 銀卡會員中的“幸運(yùn)之星”每人獎勵 600 元; 金卡會員中的“幸運(yùn)之星”每人獎勵 800 元.
方案 2:每位會員均可參加摸獎游戲,游戲規(guī)則如下:從-個裝有 3 個白球、 2 個紅球(球只有顏色不同)的箱子中, 有放回地摸三次球,每次只能摸-個球.若摸到紅球的總數(shù)消費(fèi)金額/元為 2,則可獲得 200 元獎勵金; 若摸到紅球的總數(shù)為 3,則可獲得 300 元獎勵金;其他情況不給予獎勵. 規(guī)定每位普通會員均可參加 1 次摸獎游戲;每位銀卡會員均可參加 2 次摸獎游戲;每位金卡會員均可參加 3 次摸獎游戲(每次摸獎的結(jié)果相互獨(dú)立) .
以方案 2 的獎勵金的數(shù)學(xué)期望為依據(jù),請你預(yù)測哪-種方案投資較少?并說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù),(其中為自然對數(shù)的底數(shù)).
(1)討論函數(shù)的單調(diào)性;
(2)當(dāng)時,函數(shù)有最小值,求函數(shù)的值域.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓的離心率與雙曲線的離心率互為倒數(shù),分別為橢圓的左、右頂點(diǎn),且.
(1)求橢圓的方程;
(2)已知過左頂點(diǎn)的直線與橢圓另交于點(diǎn),與軸交于點(diǎn),在平面內(nèi)是否存在一定點(diǎn),使得恒成立?若存在,求出該點(diǎn)的坐標(biāo),并求面積的最大值;若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】為抗擊新型冠狀病毒,普及防護(hù)知識,某校開展了“疫情防護(hù)”網(wǎng)絡(luò)知識競賽活動.現(xiàn)從參加該活動的學(xué)生中隨機(jī)抽取了100名學(xué)生,將他們的比賽成績(滿分為100分)分為6組:,得到如圖所示的頻率分布直方圖.
(1)求的值,并估計(jì)這100名學(xué)生的平均成績(同一組中的數(shù)據(jù)用該組區(qū)間的中點(diǎn)值為代表);
(2)在抽取的100名學(xué)生中,規(guī)定:比賽成績不低于80分為“優(yōu)秀”,比賽成績低于80分為“非優(yōu)秀”.請將下面的2×2列聯(lián)表補(bǔ)充完整,并判斷是否有99%的把握認(rèn)為“比賽成績是否優(yōu)秀與性別有關(guān)”?
優(yōu)秀 | 非優(yōu)秀 | 合計(jì) | |
男生 | 40 | ||
女生 | 50 | ||
合計(jì) | 100 |
參考公式及數(shù)據(jù):.
0.05 | 0.01 | 0.005 | 0.001 | |
3.841 | 6.635 | 7.879 | 10.828 |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知橢圓經(jīng)過點(diǎn),,是C的左、右焦點(diǎn),過的直線l與C交于A,B兩點(diǎn),且的周長為.
(1)求C的方程;
(2)若,求l的方程.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知函數(shù).
(1)若,曲線在點(diǎn)處的切線與直線平行,求的值;
(2)若,且函數(shù)的值域?yàn)?/span>,求的最小值.
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:
【題目】已知衡量病毒傳播能力的最重要指標(biāo)叫做傳播指數(shù)RO.它指的是,在自然情況下(沒有外力介入,同時所有人都沒有免疫力),一個感染到某種傳染病的人,會把疾病傳染給多少人的平均數(shù).它的簡單計(jì)算公式是:確認(rèn)病例增長率系列間隔,其中系列間隔是指在一個傳播鏈中,兩例連續(xù)病例的間隔時間(單位:天).根據(jù)統(tǒng)計(jì),確認(rèn)病例的平均增長率為,兩例連續(xù)病例的間隔時間的平均數(shù)為天,根據(jù)以上RO數(shù)據(jù)計(jì)算,若甲得這種傳染病,則輪傳播后由甲引起的得病的總?cè)藬?shù)約為( )
A.B.C.D.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com