(本小題共14分)
已知橢圓的中點在原點
O,焦點在
x軸上,點
是其左頂點,點
C在橢圓上且
(I)求橢圓的方程;
(II)若平行于
CO的直線
和橢圓交于
M,
N兩個不同點,求
面積的最大值,并求此時直線
的方程.
(I)
(II)
(I)設(shè)橢圓的標準方程為
又∵C在橢圓上,
∴橢圓的標準方程為
…………5分
(II)設(shè)
∵CO的斜率為-1,
∴設(shè)直線
的方程為
代入
劉
又C到直線
的距離
的面積
當且僅當
時取等號,此時
滿足題中條件,
∴直線
的方程為
…………14分
練習冊系列答案
相關(guān)習題
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題滿分13分)
已知橢圓
的離心率為
,以原點為圓心,橢圓的短半軸為半徑的圓與直線
相切.
(Ⅰ)求橢圓
的方程;
(Ⅱ)設(shè)
,
,
是橢圓
上關(guān)于
軸對稱的任意兩個不同的點,連結(jié)
交橢圓
于另一點
,證明直線
與
軸相交于定點
;
(Ⅲ)在(Ⅱ)的條件下,過點
的直線與橢圓
交于
,
兩點,求
的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本小題共14分)
已知
,動點
到定點
的距離比
到定直線
的距離小
.
(I)求動點
的軌跡
的方程;
(Ⅱ)設(shè)
是軌跡
上異于原點
的兩個不同點,
,求
面積的最小值;
(Ⅲ)在軌跡
上是否存在兩點
關(guān)于直線
對稱?若存在,求出直線
的方程,若不存在,說明理由.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
(本題滿分18分,其中第1小題6分,第2小題4分,第3小題8分)
現(xiàn)有變換公式
:
可把平面直角坐標系上的一點
變換到這一平面上的一點
.
(1)若橢圓
的中心為坐標原點,焦點在
軸上,且焦距為
,長軸頂點和短軸頂點間的距離為2. 求該橢圓
的標準方程,并求出其兩個焦點
、
經(jīng)變換公式
變換后得到的點
和
的坐標;
(2) 若曲線
上一點
經(jīng)變換公式
變換后得到的點
與點
重合,則稱點
是曲線
在變換
下的不動點. 求(1)中的橢圓
在變換
下的所有不動點的坐標;
(3) 在(2)的基礎(chǔ)上,試探究:中心為坐標原點、對稱軸為坐標軸的橢圓和雙曲線在變換
下的不動點的存在情況和個數(shù).
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:填空題
若橢圓
與拋物線
有公共點,則實數(shù)
a的取值范圍是_____________;
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:單選題
設(shè)
分別為具有公共焦點
的橢圓和雙曲線的離心率,
P為兩曲線的一個公共點,且滿足
的值為 ( )
A.2 | B. | C.4 | D. |
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
已知橢圓
,是否存在斜率為k(k≠0)的直線
,使
與橢圓交于不同的兩點A、B,且線段
的垂直平分線經(jīng)過點M(0,-1),求斜率k的取值范圍.
查看答案和解析>>
科目:高中數(shù)學
來源:不詳
題型:解答題
設(shè)動點
到定點
的距離比它到
軸的距離大
.記點
的軌跡為曲線
(1)求點
的軌跡方程;
(2)設(shè)圓
過
,且圓心
在
的軌跡上,
是圓
在
軸上截得的弦,當
運動時弦長
是否為定值?請說明理由.
查看答案和解析>>