相關(guān)習(xí)題
 0  210306  210314  210320  210324  210330  210332  210336  210342  210344  210350  210356  210360  210362  210366  210372  210374  210380  210384  210386  210390  210392  210396  210398  210400  210401  210402  210404  210405  210406  210408  210410  210414  210416  210420  210422  210426  210432  210434  210440  210444  210446  210450  210456  210462  210464  210470  210474  210476  210482  210486  210492  210500  266669 

科目: 來源: 題型:

如圖所示,四棱柱ABCD-A1B1C1D1中,底面為平行四邊形,以頂點A為端點的三條棱長都為1,且兩兩夾角為60°,設(shè)
AB
=
a
,
AD
=
b
AA1
=
c

(1)求AC1的長;
(2)求BD1與AC所成角的余弦值.

查看答案和解析>>

科目: 來源: 題型:

已知等比數(shù)列{an}通項式為an=(
1
2
n,設(shè)bn=nan,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線l與拋物線y2=2x相交于A(x1,y1)、B(x2,y2)兩點.
(1)求證:命題“如果直線l過點T(3,0),那么y1y2=-6”是真命題;
(2)寫出(1)中命題的逆命題,判斷它是真命題還是假命題,并說明理由;
(3)若直線l過T(3,0),求三角形ABO面積的最小值.

查看答案和解析>>

科目: 來源: 題型:

在平面直角坐標(biāo)系xOy中,直線 l的參數(shù)方程為
x=t+1
y=2t
(t為參數(shù)),曲線C的參數(shù)方程為
x=2tan2θ
y=2tanθ
(θ為參數(shù)).
(Ⅰ)試求直線l和曲線C的普通方程;
(Ⅱ)求直線l和曲線C的公共點的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:

已知△ABC中,內(nèi)角A,B,C的對邊分別是a,b,c,面積為S.
(1)求證:a2+b2+c2≥4
3
S;
(2)求證:tan
A
2
tan
B
2
,tan
B
2
tan
C
2
,tan
C
2
tan
A
2
中至少有一個不小于
1
3

查看答案和解析>>

科目: 來源: 題型:

已知
a
=(2sin
x
2
,1),
b
=(cos
x
2
-
3
sin
x
2
,1),f(x)=
a
b
+m.
(1)求f(x)在[0,2π]上的單調(diào)區(qū)間;
(2)當(dāng)x∈[0,2π]時,f(x)的最小值為2,求f(x)≥2成立的x的取值集合;
(3)若存在實數(shù)a,b,c,使得a[f(x)-m]+b[f(x-c)-m]=1,對任意x∈R恒成立,求
b
acosC
的值.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=x2+ax+b-a(a,b∈R).
(1)若關(guān)于x的不等式f(x)>0的解集為(-∞,-1)∪(3,+∞),求實數(shù)a,b的值;
(2)設(shè)a=2,若不等式f(x)>b2-3b對任意實數(shù)x都成立,求實數(shù)b的取值范圍;
(3)設(shè)b=3,解關(guān)于x的不等式組
f(x)>0
x>1

查看答案和解析>>

科目: 來源: 題型:

設(shè)函數(shù)f(x)=2sin(2ωx-
π
6
)+λ(x∈R)的圖象關(guān)于直線x=π對稱,其中ω,λ為常數(shù),且ω∈(
1
2
,1)
(1)求函數(shù)f(x)的最小正周期;
(2)若y=f(x)的圖象經(jīng)過點(
π
4
,0),求函數(shù)f(x)的值域.

查看答案和解析>>

科目: 來源: 題型:

已知函數(shù)f(x)=ea-x,其中e是自然對數(shù)的底數(shù),a∈R.
(Ⅰ)求函數(shù)g(x)=xf(x)的單調(diào)區(qū)間;
(Ⅱ)試確定函數(shù)h(x)=f(x)+x的零點個數(shù),并說明理由.

查看答案和解析>>

科目: 來源: 題型:

已知遞增數(shù)列{an}的前n項和為Sn,且滿足a1=1,4Sn-4n+1=an2.設(shè)bn=
1
anan+1
,n∈N*,且數(shù)列{bn}的前n項和為Tn
(1)求證:數(shù)列{an}為等差數(shù)列;
(2)試求所有的正整數(shù)m,使得
am2+am+12-am+22
amam+1
為整數(shù);
(3)若對任意的n∈N*,不等式λTn<n+18(-1)n+1恒成立,求實數(shù)λ的取值范圍.

查看答案和解析>>

同步練習(xí)冊答案