在一次對某班42名學(xué)生參加課外籃球、排球興趣小組(每人參加且只參加一個興趣小組)情況調(diào)查中,經(jīng)統(tǒng)計得到如下2×2列聯(lián)表:(單位:人)
|
籃球 |
排球 |
總計 |
男同學(xué) |
16 |
6 |
22 |
女同學(xué) |
8 |
12 |
20 |
總計 |
24 |
18 |
42 |
(Ⅰ)據(jù)此判斷是否有95%的把握認(rèn)為參加“籃球小組”或“排球小組”與性別有關(guān)?
(Ⅱ)在統(tǒng)計結(jié)果中,如果不考慮性別因素,按分層抽樣的方法從兩個興趣小組中隨機抽取7名同學(xué)進行座談.已知甲、乙、丙三人都參加“排球小組”.
①求在甲被抽中的條件下,乙丙也都被抽中的概率;
②設(shè)乙、丙兩人中被抽中的人數(shù)為X,求X的分布列及數(shù)學(xué)期望E(X).
下面臨界值表供參考:
P(K2≥k0) |
0.15 |
0.10 |
0.05 |
0.025 |
0.010 |
0.005 |
0.001 |
k0 |
2.072 |
2.706 |
3.841 |
5.024 |
6.635 |
7.879 |
10.828 |
參考公式:K
2=
n(ad-bc)2 |
(a+b)(c+d)(a+c)(b+d) |
.