相關習題
 0  234767  234775  234781  234785  234791  234793  234797  234803  234805  234811  234817  234821  234823  234827  234833  234835  234841  234845  234847  234851  234853  234857  234859  234861  234862  234863  234865  234866  234867  234869  234871  234875  234877  234881  234883  234887  234893  234895  234901  234905  234907  234911  234917  234923  234925  234931  234935  234937  234943  234947  234953  234961  266669 

科目: 來源: 題型:選擇題

10.已知函數(shù)f(x)=-x3+3x+m恰有兩個零點,則實數(shù)m=(  )
A.-2或2B.-1或1C.-1或-2D.1或2

查看答案和解析>>

科目: 來源: 題型:選擇題

9.現(xiàn)有如下的錯誤推理:“因為任何復數(shù)的平方都大于等于0,而i是復數(shù),所以i2>0,即-1>0”,其錯誤的原因是( 。
A.大前提錯誤導致結論錯誤B.小前提錯誤導致結論錯誤
C.推理形式錯誤導致結論錯誤D.大前提和推理形式都錯誤導致錯誤

查看答案和解析>>

科目: 來源: 題型:解答題

8.已知拋物線C:y2=2px(p>0),焦點F($\frac{p}{2}$,0),如果存在過點M(x0,0)$({x_0}>\frac{p}{2})$的直線l與拋物線C交于不同的兩點A、B,使得S△AOM=λ•S△FAB,則稱點M為拋物線C的“λ分點”.
(1)如果M(p,0),直線l:x=p,求λ的值;
(2)如果M(p,0)為拋物線C的“$\frac{4}{3}$分點”,求直線l的方程;
(3)(普通中學做)命題甲:證明點M(p,0)不是拋物線C的“2分點”;
(重點中學做)命題乙:如果M(x0,0)$({x_0}>\frac{p}{2})$是拋物線的“2分點”,求x0的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

7.已知圓C:x2+y2=5.
(1)求直線y=x+2被圓C截得的弦長;
(2)求過點$N(\begin{array}{l}{1,}3\end{array})$的圓的切線方程.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.過拋物線y=x2的焦點F作一直線交拋物線于M(x1,y1)、N(x2,y2)兩點,如果y1+y2=1,則線段MN的中點到準線的距離等于(  )
A.$\frac{1}{4}$B.$\frac{1}{2}$C.$\frac{3}{4}$D.1

查看答案和解析>>

科目: 來源: 題型:填空題

5.對于曲線C所在的平面上的定點P,若存在以點P為頂點的角α,使得α≥∠APB對于曲線C上的任意兩個不同的點A、B恒成立,則稱角α為曲線C的“P點視角”,并稱其中最小的“P點視角”為曲線C相對于點P的“P點確視角”.已知曲線C:x2+y2=2,相對于點P(2,0)的“P點確視角”的大小是$\frac{π}{2}$.

查看答案和解析>>

科目: 來源: 題型:填空題

4.若將一個45°的直角三角板的一直角邊放在一桌面上,另一直角邊與桌面所成角為45°,則此時該三角板的斜邊與桌面所成的角等于30°.

查看答案和解析>>

科目: 來源: 題型:填空題

3.一個圓經(jīng)過橢圓$\frac{x^2}{9}+\frac{y^2}{3}=1$的三個頂點,且圓心在x軸上,則該圓的方程為(x±1)2+y2=4.

查看答案和解析>>

科目: 來源: 題型:填空題

2.在45°的二面角的一個半平面內(nèi)有一點P,它到另一個半平面的距離等于1,則點P到二面角的棱的距離為$\sqrt{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

1.已知橢圓C:$\frac{x^2}{a^2}+\frac{y^2}{b^2}=1$(a>b>0)的離心率e=$\frac{1}{2}$,且過點$M(1,\frac{3}{2})$.
(1)求橢圓C的方程;
(2)橢圓C長軸兩端點分別為A,B,點P為橢圓上異于A,B的動點,定直線x=4與直線PA,PB分別交于M,N兩點,又E(7,0),求證:直線EM⊥直線EN.

查看答案和解析>>

同步練習冊答案