相關習題
 0  235285  235293  235299  235303  235309  235311  235315  235321  235323  235329  235335  235339  235341  235345  235351  235353  235359  235363  235365  235369  235371  235375  235377  235379  235380  235381  235383  235384  235385  235387  235389  235393  235395  235399  235401  235405  235411  235413  235419  235423  235425  235429  235435  235441  235443  235449  235453  235455  235461  235465  235471  235479  266669 

科目: 來源: 題型:填空題

18.定義:如果函數(shù)f(x)在[a,b]上存在x1,x2(a<x1<x2<b)滿足f′(x1)=$\frac{f(b)-f(a)}{b-a}$,f′(x2)=$\frac{f(b)-f(a)}{b-a}$,則稱函數(shù)f(x)是[a,b]上的“雙中值函數(shù)”,已知函數(shù)f(x)=2x3-x2+m是[0,2a]上“雙中值函數(shù)”,則實數(shù)a的取值范圍是$({\frac{1}{8},\frac{1}{4}})$.

查看答案和解析>>

科目: 來源: 題型:選擇題

17.執(zhí)行如圖所示的程序框圖后,輸出s的值為(  )
A.8B.9C.30D.36

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知四面體ABCD的每個頂點都在球O的表面上,AB=AC=5,BC=8,AD⊥底面ABC,G為△ABC的重心,且直線DG與底面ABC所成角的正切值為$\frac{1}{2}$,則球O的表面積為$\frac{634π}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

15.在△ABC中,角A,B,C所對邊分別為a,b,c,若$B=30°,b=2,c=2\sqrt{3}$,則角C=60°或120°.

查看答案和解析>>

科目: 來源: 題型:選擇題

14.已知f(x)=x+1,g(x)=-2x,$F(x)=\left\{\begin{array}{l}f(x),f(x)<g(x)\\ g(x),f(x)≥g(x)\end{array}\right.$,則F(x)的最值是(  )
A.有最大值為$\frac{2}{3}$,無最小值B.有最大值為$-\frac{1}{3}$,無最小值
C.有最小值為$-\frac{1}{3}$,無最大值D.有最小值為$\frac{2}{3}$,無最大值

查看答案和解析>>

科目: 來源: 題型:選擇題

13.已知定義在R上的奇函數(shù)f(x)和偶函數(shù)g(x)滿足:f(x)+g(x)=ex,則(  )
A.$f(x)=\frac{{{e^x}+{e^{-x}}}}{2}$B.$f(x)=\frac{{{e^x}-{e^{-x}}}}{2}$C.$g(x)=\frac{{{e^x}-{e^{-x}}}}{2}$D.$g(x)=\frac{{{e^{-x}}-{e^x}}}{2}$

查看答案和解析>>

科目: 來源: 題型:解答題

12.如圖,在四棱錐P-ABCD中,PD⊥平面ABCD,底面ABCD為菱形,.點分E,F(xiàn),G,H別是棱AB,CD,PC,PB上共面的四點,且BC∥EF. 
證明:GH∥EF.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知a,b∈R+,求證:a3+b3≥a2b+ab2

查看答案和解析>>

科目: 來源: 題型:選擇題

10.已知函數(shù)f(x)=$\left\{\begin{array}{l}{x-{x}^{3},x>1}\\{x+2,x≤1}\end{array}\right.$,若關于x的方程f(f(x))=a存在2個實數(shù)根,則a的取值范圍為( 。
A.[-24,0)B.(-∞,-24)∪[0,2)C.(-24,3)D.(-∞,-24]∪[0,2]

查看答案和解析>>

科目: 來源: 題型:解答題

9.在數(shù)列{an}中,a1=1,點$(\frac{1}{a_n},\frac{1}{{{a_{n+1}}}})$在函數(shù)f(x)=x+3的圖象上.
(1)求數(shù)列{an}的通項公式;
(2)若bn=(-1)n$\frac{1}{a_n}$,求數(shù)列{bn}的前n項和Sn

查看答案和解析>>

同步練習冊答案