相關(guān)習(xí)題
 0  250467  250475  250481  250485  250491  250493  250497  250503  250505  250511  250517  250521  250523  250527  250533  250535  250541  250545  250547  250551  250553  250557  250559  250561  250562  250563  250565  250566  250567  250569  250571  250575  250577  250581  250583  250587  250593  250595  250601  250605  250607  250611  250617  250623  250625  250631  250635  250637  250643  250647  250653  250661  266669 

科目: 來源: 題型:解答題

10.已知數(shù)列{an}滿足下列條件,求其數(shù)列的通項公式an
(1)a1=0,an+1=an+(2n-1);
(2)a1=1,an+1=2Sn;
(3)a1=5,an=2an-1+3(n≥2);
(4)Sn=3+2n;
(5)a1=1,nan+1-(n+1)an=0.

查看答案和解析>>

科目: 來源: 題型:解答題

9.f(x)是定義在非零實數(shù)上的增函數(shù),且滿足f($\frac{x}{y}$)=f(x)-f(y).
(1)求f(1)的值;
(2)證明:f(x)是偶函數(shù);
(3)若f(6)=1,解不等式f(x+5)-f($\frac{1}{x}$)<2.

查看答案和解析>>

科目: 來源: 題型:解答題

8.一小車A從靜止開始以2m/s2的加速度作勻加速度直線運動,持續(xù)5秒鐘后作加速度為0的勻速直線運動,并保持10秒,最后以-1m/s2的加速度作勻減速度直線運動直至小車靜止.另有一小車B在同一起點,從開始時刻以速度v0作勻速直線運動.
(1)寫出小車A的速度v與時間t的函數(shù)關(guān)系式,并作出其函數(shù)圖象;
(2)寫出小車A的位移S與時間t的函數(shù)關(guān)系式.
(3)若小車B在小車A的靜止地點與A相遇,求小車B的速度v0及兩車另一相遇時刻;
(4)若小車A、B存在兩個相遇的時刻,求小車B的速度v0的范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

7.已知△ABC的內(nèi)角A,B,C所對的邊分別為a,b,c,若a=$\sqrt{2}$,b=2,sinB=$\sqrt{3}$(1-cosB),則sinA的值為$\frac{\sqrt{6}}{4}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

6.在如圖的正方形中隨機撒一把豆子,用隨機模擬的方法估圓周率的值:經(jīng)查數(shù),落在正方形中的豆子的總數(shù)為n粒,其中m(m<n)粒豆子落在該正方形的內(nèi)切圓內(nèi),以此估計圓周率π為(  )
A.$\frac{m}{n}$B.$\frac{2m}{n}$C.$\frac{3m}{n}$D.$\frac{4m}{n}$

查看答案和解析>>

科目: 來源: 題型:解答題

5.由函數(shù)y=f(x)確定數(shù)列{an},an=f(n),函數(shù)y=f(x)的反函數(shù)y=f-1(x)能確定數(shù)列{bn},bn=f-1(n),若對于任意n∈N*,都有bn=an,則稱數(shù)列{bn}是數(shù)列{an}的“自反數(shù)列”.
(1)若函數(shù)f(x)=$\frac{px+1}{x+1}$確定數(shù)列{an}的自反數(shù)列為{bn},求an;
(2)已知正數(shù)數(shù)列{cn}的前n項之和Sn=$\frac{1}{2}({{c_n}+\frac{n}{c_n}})$,寫出Sn表達式,并證明你的結(jié)論;
(3)在(1)和(2)的條件下,d1=2,當(dāng)n≥2時,設(shè)dn=$\frac{-1}{{{a_n}S_n^2}}$,Dn是數(shù)列{dn}的前n項之和,且$\lim_{n→∞}{D_n}$>loga(1-2a)恒成立,求a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知函數(shù)y=f(x)的圖象是自原點出發(fā)的一條折線,當(dāng)n≤y≤n+1(n=0,1,2…)時,該圖象是斜率為bn的線段(其中正常數(shù)b≠1),設(shè)數(shù)列{xn},由f(xn)=n(n=1,2…)定義,
(文科)則x1+x2=$2+\frac{1}$
(理科)則xn的通項公式為${x}_{n}=\frac{b-\frac{1}{^{n-1}}}{b-1}$.

查看答案和解析>>

科目: 來源: 題型:解答題

3.已知數(shù)列{an}的前n項和為Sn,且Sn=n2+2n,(n∈N*
求:(1)數(shù)列{an}的通項公式an;
(2)若bn=an•3n,求數(shù)列{bn}的前n項和 Tn

查看答案和解析>>

科目: 來源: 題型:解答題

2.已知等差數(shù)列{an}的前n項和為Sn,已知a5=9,S10=100.
(Ⅰ)求通項an;
(Ⅱ)記數(shù)列{$\frac{{S}_{n}}{n}$}的前n項和為Tn,數(shù)列{$\frac{1}{{S}_{n+1}-{T}_{n+1}}$}的前n項和為Un,求證:Un<2.

查看答案和解析>>

科目: 來源: 題型:填空題

1.若關(guān)于x的一元二次實系數(shù)方程x2+px+q=0有一個根為 1+i,(i為虛數(shù)單位),則p+q的值是0.

查看答案和解析>>

同步練習(xí)冊答案