相關(guān)習(xí)題
 0  251422  251430  251436  251440  251446  251448  251452  251458  251460  251466  251472  251476  251478  251482  251488  251490  251496  251500  251502  251506  251508  251512  251514  251516  251517  251518  251520  251521  251522  251524  251526  251530  251532  251536  251538  251542  251548  251550  251556  251560  251562  251566  251572  251578  251580  251586  251590  251592  251598  251602  251608  251616  266669 

科目: 來源: 題型:填空題

15.給出下列命題:
(1)終邊在y軸上的角的集合是$\{α|α=\frac{kπ}{2},k∈{Z}\}$;
(2)把函數(shù)f(x)=2sin2x的圖象沿x軸方向向左平移$\frac{π}{6}$個單位后,得到的函數(shù)解析式可以表示成$f(x)=2sin2(x+\frac{π}{6})$;
(3)函數(shù)f(x)=$\frac{1}{2}sinx+\frac{1}{2}|{sinx}$|的值域是[-1,1];
(4)已知函數(shù)f(x)=2cosx,若存在實(shí)數(shù)x1,x2,使得對任意的實(shí)數(shù)x都有f(x1)≤f(x)≤f(x2)成立,則|x1-x2|的最小值為2π.
其中正確的命題的序號為(2).

查看答案和解析>>

科目: 來源: 題型:填空題

14.已知A={x|-2≤x≤5},B={x|m-1≤x≤m+1},B⊆A,則m的取值范圍為[-1,4].

查看答案和解析>>

科目: 來源: 題型:填空題

13.若f(x)=4x2+1,則f(x+1)=4x2+8x+5.

查看答案和解析>>

科目: 來源: 題型:解答題

12.設(shè)f(x)=log${\;}_{\frac{1}{2}}$$\frac{1-ax}{x-1}$為奇函數(shù),a為常數(shù).
(1)求a的值;
(2)證明f(x)在區(qū)間(1,+∞)內(nèi)單調(diào)遞增;
(3)若對于區(qū)間[2,5]上的每一個x的值,不等式f(x)>($\frac{1}{2}$)x+m恒成立,求實(shí)數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知二次函數(shù)f(x)=3x2+bx+c,不等式f(x)>0的解集為(-∞,-2)∪(0,+∞)
(1)求f(x)的解析式;
(2)若函數(shù)g(x)=f(x)+mx-2在(2,3)上單調(diào),求實(shí)數(shù)m的取值范圍;
(3)若對于任意的x∈[-2,2],f(x)+n≤3都成立,求實(shí)數(shù)n的最大值.

查看答案和解析>>

科目: 來源: 題型:填空題

10.已知$\overrightarrow{a}$=(1,2),$\overrightarrow$(2,λ),且$\overrightarrow{a}$與$\overrightarrow$的夾角為銳角,則實(shí)數(shù)λ的取值范圍是λ>-1且λ≠4.

查看答案和解析>>

科目: 來源: 題型:填空題

9.命題“?x∈R,x2-mx-2<0”的否定是?x∈R,x2-mx-2≥0.

查看答案和解析>>

科目: 來源: 題型:選擇題

8.已知tanα=2,則sinαcosα=( 。
A.-$\frac{2}{3}$B.$\frac{2}{5}$C.-$\frac{4}{5}$D.$\frac{4}{5}$

查看答案和解析>>

科目: 來源: 題型:選擇題

7.若函數(shù)f(x)=$\left\{\begin{array}{l}{sinx,-\frac{π}{2}≤x≤0}\\{a(x-1)+1,x>0}\end{array}\right.$在(-$\frac{π}{2}$,+∞)上單調(diào)遞增,實(shí)數(shù)a的取值范圍( 。
A.(0,1]B.(0,1)C.[1,+∞)D.(0,+∞)

查看答案和解析>>

科目: 來源: 題型:解答題

6.如圖,在四棱錐P-ABCD中,底面ABCD是矩形,PA⊥平面ABCD,且PA=AD,點(diǎn)F是棱PD的中點(diǎn),點(diǎn)E在棱CD上移動.求證:PE⊥AF.

查看答案和解析>>

同步練習(xí)冊答案