相關(guān)習(xí)題
 0  251949  251957  251963  251967  251973  251975  251979  251985  251987  251993  251999  252003  252005  252009  252015  252017  252023  252027  252029  252033  252035  252039  252041  252043  252044  252045  252047  252048  252049  252051  252053  252057  252059  252063  252065  252069  252075  252077  252083  252087  252089  252093  252099  252105  252107  252113  252117  252119  252125  252129  252135  252143  266669 

科目: 來源: 題型:選擇題

14.已知直線l過點P(1,-2),且在x軸和y軸上的截距互為相反數(shù),則直線l的方程為( 。
A.x-y-3=0B.x+y+1=0或2x+y=0
C.x-y-3=0或2x+y=0D.x+y+1=0或x-y-3=0或2x+y=0

查看答案和解析>>

科目: 來源: 題型:選擇題

13.蘋果手機上的商標圖案(如圖所示)是在一個蘋果圖案中,以曲線段AB為分界線,裁去一部分圖形制作而成的,如果該分界線是一段半徑為R的圓弧,且A、B兩點間的距離為$\sqrt{2}R$,那么分界線的長度應(yīng)為( 。
A.$\frac{πR}{6}$B.$\frac{πR}{3}$C.$\frac{πR}{2}$D.πR

查看答案和解析>>

科目: 來源: 題型:選擇題

12.直線3x+$\sqrt{3}$y-4=0的傾斜角是( 。
A.30°B.60°C.120°D.150°

查看答案和解析>>

科目: 來源: 題型:解答題

11.已知二次函數(shù)f(x)=x2+bx+c,方程f(x)-x=0的兩個根x1,x2滿足0<x1<x2<1.
(Ⅰ)當(dāng)x∈(0,x1)時,證明:x<f(x)<x1;
(Ⅱ)設(shè)函數(shù)f(x)的圖象關(guān)于直線x=x0對稱,證明:x0<$\frac{x_1}{2}$.

查看答案和解析>>

科目: 來源: 題型:解答題

10.已知直線l為函數(shù)y=x+b的圖象,曲線C為二次函數(shù)y=(x-1)2+2的圖象,直線l與曲線C交于不同兩點A,B
(Ⅰ)當(dāng)b=7時,求弦AB的長;
(Ⅱ)求線段AB中點的軌跡方程;
(Ⅲ)試利用拋物線的定義證明:曲線C為拋物線.

查看答案和解析>>

科目: 來源: 題型:填空題

9.已知f(x)=m(x-3m)(x+m+3),g(x)=2x-4.若同時滿足條件:
①?x∈R,f(x)<0或g(x)<0;
②?x∈(-∞,-4),f(x)g(x)<0,
則m的取值范圍是(-5,-$\frac{4}{3}$).

查看答案和解析>>

科目: 來源: 題型:填空題

8.若圓M的方程為x2+y2=4,則圓M的參數(shù)方程為$\left\{{\begin{array}{l}{x=2cosα}\\{y=2sinα}\end{array}}\right.(α為參數(shù))$.

查看答案和解析>>

科目: 來源: 題型:解答題

7.如圖所示,在平行六面體ABCD-A1B1C1D1中,E.M.N.G分別是AA1,CD,CB,CC1的中點,求證:
(1)MN∥B1D1
(2)AC1∥平面EB1D1
(3)平面EB1D1∥平面BDG.

查看答案和解析>>

科目: 來源: 題型:解答題

6.若函數(shù)f(x)為定義域D上的單調(diào)函數(shù),且存在區(qū)間[a,b]⊆D,使得當(dāng)x∈[a,b]時,函數(shù)f(x)的值域恰好為[a,b],則稱函數(shù)f(x)為D上的“正函數(shù)”,區(qū)間[a,b]為函數(shù)f(x)的“正區(qū)間”.
(1)試判斷函數(shù)f(x)=$\frac{3}{4}$x2-3x+4是否為“正函數(shù)”?若是“正函數(shù)”,求函數(shù)f(x)的“正區(qū)間”;若不是“正函數(shù)”,請說明理由;
(2)設(shè)命題p:f(x)=$\sqrt{x-\frac{8}{9}}$+m是“正函數(shù)”;命題q:g(x)=x2-m(x<0)是“正函數(shù)”.若p∧q是真命題,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.(1)已知p:-x2+8x+20≥0,q:x2-2x+1-m2≤0(m>0).若“¬p”是“¬q”的充分不必要條件,求實數(shù)m的取值范圍;
(2)已知兩個關(guān)于x的一元二次方程mx2-4x+4=0和x2-4mx+4m2-4m-5=0,求兩方程的根都是整數(shù)的充要條件.

查看答案和解析>>

同步練習(xí)冊答案