相關(guān)習(xí)題
 0  252075  252083  252089  252093  252099  252101  252105  252111  252113  252119  252125  252129  252131  252135  252141  252143  252149  252153  252155  252159  252161  252165  252167  252169  252170  252171  252173  252174  252175  252177  252179  252183  252185  252189  252191  252195  252201  252203  252209  252213  252215  252219  252225  252231  252233  252239  252243  252245  252251  252255  252261  252269  266669 

科目: 來源: 題型:填空題

13.已知函數(shù)f(x)=mx2+2x-1有且僅有一個(gè)正實(shí)數(shù)的零點(diǎn),則實(shí)數(shù)m的取值范圍是{-1}∪[0,+∞).

查看答案和解析>>

科目: 來源: 題型:填空題

12.有一扇形其弧長為6,半徑為3,則該弧所對弦長為6sin1,扇形面積為9.

查看答案和解析>>

科目: 來源: 題型:填空題

11.函數(shù)$y={log_{\frac{1}{2}}}(-{x^2}+5x-6)$的單調(diào)增區(qū)間為$[\frac{5}{2},3)$,值域?yàn)閇2,+∞).

查看答案和解析>>

科目: 來源: 題型:選擇題

10.函數(shù)$f(x)={log_{\frac{1}{2}}}cos(2x-\frac{2}{3}π)$的單調(diào)增區(qū)間為( 。
A.$({kπ+\frac{π}{3},kπ+\frac{7π}{12}})(k∈Z)$B.$({kπ-\frac{π}{6},kπ+\frac{π}{3}})(k∈Z)$
C.$({kπ+\frac{π}{12},kπ+\frac{π}{3}})(k∈Z)$D.$({kπ+\frac{π}{3},kπ+\frac{5π}{6}})(k∈Z)$

查看答案和解析>>

科目: 來源: 題型:選擇題

9.已知-1<α<0,則(  )
A.${0.2^α}>{(\frac{1}{2})^α}>{2^α}$B.${2^α}>{0.2^α}>{(\frac{1}{2})^α}$C.${(\frac{1}{2})^α}>{0.2^α}>{2^α}$D.${2^α}>{(\frac{1}{2})^α}>{0.2^α}$

查看答案和解析>>

科目: 來源: 題型:選擇題

8.下列函數(shù)中,既是奇函數(shù)又是增函數(shù)的為( 。
A.y=x+1B.y=-x3C.y=x-1D.y=x|x|

查看答案和解析>>

科目: 來源: 題型:選擇題

7.tan(-330°)的值為(  )
A.$\frac{{\sqrt{3}}}{3}$B.$-\sqrt{3}$C.$-\frac{{\sqrt{3}}}{3}$D.$\sqrt{3}$

查看答案和解析>>

科目: 來源: 題型:選擇題

6.函數(shù)$f(x)={(a-1)^{\sqrt{5-ax}}}$(a>1且a≠2)在[1,2]上為單調(diào)遞減函數(shù),則實(shí)數(shù)a的取值范圍是( 。
A.(2,+∞)B.(1,2)C.$(2,\frac{5}{2}]$D.(1,5)

查看答案和解析>>

科目: 來源: 題型:解答題

5.設(shè)已知函數(shù)f(x)=|x-a|-$\frac{4}{x}$+a,a∈R,
(Ⅰ)當(dāng)x∈[1,4]時(shí),求函數(shù)f(x)的最大值的表達(dá)式M(a)
(Ⅱ)是否存在實(shí)數(shù)a,使得f(x)=3有且僅有3個(gè)不等實(shí)根,且它們成等差數(shù)列,若存在,求出所有a的值,若不存在,說明理由.

查看答案和解析>>

科目: 來源: 題型:填空題

4.已知實(shí)數(shù)x,y滿足約束條件$\left\{\begin{array}{l}{x≥0}\\{y≤x}\\{2x+y-9≤0}\end{array}\right.$時(shí),所表示的平面區(qū)域?yàn)镈,則z=x+3y的最大值等于12,若直線y=a(x+1)與區(qū)域D有公共點(diǎn),則a的取值范圍是a$≤\frac{3}{4}$.

查看答案和解析>>

同步練習(xí)冊答案