分析 由約束條件作出可行域,化目標函數(shù)為直線方程的斜截式,數(shù)形結(jié)合得到最優(yōu)解,聯(lián)立方程組求出最優(yōu)解的坐標,代入目標函數(shù)得答案;再由直線y=a(x+1)過定點(-1,0),結(jié)合圖象求得a的取值范圍.
解答 解:由約束條件作出可行域如圖,
聯(lián)立$\left\{\begin{array}{l}{y=x}\\{2x+y-9=0}\end{array}\right.$,解得A(3,3),
化目標函數(shù)z=x+3y為$y=-\frac{x}{3}+\frac{z}{3}$,
由圖可知,當(dāng)直線$y=-\frac{x}{3}+\frac{z}{3}$過A(3,3)時,直線在y軸上的截距最大,z有最大值為12;
∵直線y=a(x+1)過定點(-1,0),要使直線y=a(x+1)與區(qū)域D有公共點,
則a≤kMA=$\frac{3-0}{3-(-1)}=\frac{3}{4}$.
故答案為:12;$a≤\frac{3}{4}$.
點評 本題考查簡單的線性規(guī)劃,考查了數(shù)形結(jié)合的解題思想方法,是中檔題.
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | ${0.2^α}>{(\frac{1}{2})^α}>{2^α}$ | B. | ${2^α}>{0.2^α}>{(\frac{1}{2})^α}$ | C. | ${(\frac{1}{2})^α}>{0.2^α}>{2^α}$ | D. | ${2^α}>{(\frac{1}{2})^α}>{0.2^α}$ |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:解答題
組別 | [25,30) | [30,35) | [35,40) | [40,45) | [45,50) |
人數(shù) | 50 | 50 | a | 150 | b |
查看答案和解析>>
科目:高中數(shù)學(xué) 來源: 題型:選擇題
A. | 若a3>0,則a2015<0 | B. | 若a4>0,則a2015<0 | ||
C. | 若a3>0,則a2015>0 | D. | 若a4>0,則a2015>0 |
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com