相關(guān)習題
 0  252086  252094  252100  252104  252110  252112  252116  252122  252124  252130  252136  252140  252142  252146  252152  252154  252160  252164  252166  252170  252172  252176  252178  252180  252181  252182  252184  252185  252186  252188  252190  252194  252196  252200  252202  252206  252212  252214  252220  252224  252226  252230  252236  252242  252244  252250  252254  252256  252262  252266  252272  252280  266669 

科目: 來源: 題型:填空題

3.在等腰梯形ABCD中,已知AB∥CD,AB=4,BC=2,∠ABC=60°,動點E和F分別在線段BC和DC上,且$\overrightarrow{BE}$=λ$\overrightarrow{BC}$,$\overrightarrow{DF}$=$\frac{1}{9λ}\overrightarrow{DC}$,當λ=$\frac{2}{3}$時,則$\overrightarrow{AE}$•$\overrightarrow{AF}$有最小值為$\frac{58}{9}$.

查看答案和解析>>

科目: 來源: 題型:填空題

2.已知函數(shù)y=f(x)為R上的奇函數(shù),且x≥0時,f(x)=x2+2x-2x+1+a,則f(-1)=-1.

查看答案和解析>>

科目: 來源: 題型:填空題

1.已知x,y∈R+,x+y=1,則$\frac{x}{y}$+$\frac{1}{x}$的最小值為3.

查看答案和解析>>

科目: 來源: 題型:填空題

20.函數(shù)f(x)=sinωx•cosωx的最小正周期為2,則ω=$\frac{π}{2}$.

查看答案和解析>>

科目: 來源: 題型:選擇題

19.已知函數(shù)f(x)=$\left\{\begin{array}{l}{(2a-1)x+3a,x≤1}\\{lo{g}_{a}x,x>1}\end{array}\right.$滿足對任意的實數(shù)x1≠x2,都有$\frac{f({x}_{2})-f({x}_{1})}{{x}_{1}-{x}_{2}}$>0成立,則實數(shù)a的取值范圍是( 。
A.(0,1)B.(0,$\frac{1}{2}$)C.[$\frac{1}{5}$,$\frac{1}{2}$)D.[$\frac{1}{5}$,1)

查看答案和解析>>

科目: 來源: 題型:解答題

18.設(shè)函數(shù)f(x)=lg(3-x)+$\frac{1}{\sqrt{x-1}}$的定義于為A,函數(shù)g(x)=$\frac{2}{x+1}$,x∈(0,m)的值域為B.
(1)當m=2時,求A∩B;
(2)若B⊆A,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.函數(shù)y=-5sin($\frac{π}{6}$-3x)的頻率為$\frac{3}{2π}$,,振幅為5,初相為-$\frac{π}{6}$,當x=$\frac{2π}{9}$+$\frac{2kπ}{3}$,k∈Z時,y取最大值為5.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知A、B為橢圓$\frac{{x}^{2}}{{a}^{2}}$+$\frac{{y}^{2}}{^{2}}$=1(a>b>0)的左右頂點,C(0,b),直線l:x=2a與x軸交于點D,與直線AC交于點P,且BP平分角∠DBC,則橢圓的離心率為$\frac{\sqrt{2}}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

15.已知數(shù)列{an}各項均為正數(shù),且滿足a1=1,an+1=2an+1(n∈N*).
(1)求數(shù)列{an}的通項公式an;
(2)若點Pn(an,yn)(n∈N*)是曲線f(x)=$\frac{lo{g}_{2}(x+1)}{x+1}$(x>0)上的列點,且點Pn(an,yn)在x軸上的射影為Qn(an,0)(n∈N*),設(shè)四邊形PnQnQn+1Pn+1的面積是Sn,求證:n∈N*時,$\frac{1}{{S}_{1}}$+$\frac{1}{2{S}_{2}}$+$\frac{1}{3{S}_{n}}$+…+$\frac{1}{n{S}_{n}}$<$\frac{7}{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

14.在等差數(shù)列{an}中,首項a1=-1,數(shù)列{bn}滿足bn=($\frac{1}{2}$)${\;}^{{a}_{n}}$,且b1b2b3=$\frac{1}{64}$.
(1)求數(shù)列{an}的通項公式;
(2)設(shè)cn=(-1)nan,求數(shù)列{cn}的前2n項和T2n

查看答案和解析>>

同步練習冊答案