相關(guān)習(xí)題
 0  252088  252096  252102  252106  252112  252114  252118  252124  252126  252132  252138  252142  252144  252148  252154  252156  252162  252166  252168  252172  252174  252178  252180  252182  252183  252184  252186  252187  252188  252190  252192  252196  252198  252202  252204  252208  252214  252216  252222  252226  252228  252232  252238  252244  252246  252252  252256  252258  252264  252268  252274  252282  266669 

科目: 來源: 題型:選擇題

3.已知a=2${\;}^{-\frac{1}{3}}$,b=log20.7,c=log23,則( 。
A.a>b>cB.a>c>bC.c>a>bD.c>b>a

查看答案和解析>>

科目: 來源: 題型:選擇題

2.下列函數(shù),在其定義域內(nèi)既是奇函數(shù)又是增函數(shù)的是(  )
A.y=-log2xB.y=3xC.y=-$\frac{1}{x}$D.y=x3

查看答案和解析>>

科目: 來源: 題型:填空題

1.設(shè)點(diǎn)P是雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}=1(a>0,b>0)$與圓x2+y2=2a2的一個(gè)交點(diǎn),F(xiàn)1、F2分別是雙曲線的左右焦點(diǎn),且PF1=3PF2,則雙曲線的離心率為$\sqrt{3}$.

查看答案和解析>>

科目: 來源: 題型:解答題

20.已知直線1的方程為x+(a-1)y+a2-1=0.
(1)若直線1不過第二象限,求實(shí)數(shù)a的取值范圍;
(2)若直線1將圓x2+y2-2mx-4y=0平分,當(dāng)m取得最大值時(shí),求圓的方程.

查看答案和解析>>

科目: 來源: 題型:解答題

19.如圖所示,在正方體ABCD-A1B1C1D1中,E在A1D1上,且$\overrightarrow{{A}_{1}E}=2\overrightarrow{E{D}_{1}}$,F(xiàn)在對(duì)角線A1C上,且$\overrightarrow{{A}_{1}F}=\frac{2}{3}\overrightarrow{FC}$.求證:E,F(xiàn),B三點(diǎn)共線.

查看答案和解析>>

科目: 來源: 題型:選擇題

18.過點(diǎn)(1,1)且$\frac{a}$=$\sqrt{2}$的雙曲線的標(biāo)準(zhǔn)方程為(  )
A.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1B.$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1
C.x2-$\frac{{y}^{2}}{\frac{1}{2}}$=1D.$\frac{{x}^{2}}{\frac{1}{2}}$-y2=1或$\frac{{y}^{2}}{\frac{1}{2}}$-x2=1

查看答案和解析>>

科目: 來源: 題型:解答題

17.已知雙曲線$\frac{{x}^{2}}{{a}^{2}}-\frac{{y}^{2}}{^{2}}$=1的離心率e=$\frac{\sqrt{5}}{2}$,點(diǎn)A(0,1)與雙曲線上的點(diǎn)的最小距離是$\frac{2}{5}$$\sqrt{30}$,求雙曲線的方程.

查看答案和解析>>

科目: 來源: 題型:填空題

16.已知函數(shù)y=tan(2x+φ)的圖象的一個(gè)對(duì)稱中心為($\frac{π}{2}$,0),則φ={α|α=($\frac{1}{2}$k-1)π,k∈Z}.

查看答案和解析>>

科目: 來源: 題型:解答題

15.如圖,M為橢圓C:$\frac{{y}^{2}}{{a}^{2}}$+$\frac{{x}^{2}}{^{2}}$=1(a>b>0)的左頂點(diǎn),F(xiàn)1是它的下焦點(diǎn),F(xiàn)1也是拋物線x2=-4y的焦點(diǎn),直線MF1與橢圓C的另一個(gè)交點(diǎn)為N,滿足$\overrightarrow{M{F}_{1}}$=$\frac{5}{3}$$\overrightarrow{{F}_{1}N}$
(1)求橢圓C的方程;
(2)若直線l:y=kx+m與橢圓C相交于A、B兩點(diǎn)(A、B不是上下頂點(diǎn)),且滿足AA2⊥BA2(A2為上頂點(diǎn)),求證:直線l過定點(diǎn),并求出該定點(diǎn)的坐標(biāo).

查看答案和解析>>

科目: 來源: 題型:解答題

14.已知方程ax2+bx+c=0(a≠0)有一非零根x1,方程-ax2+bx+c=0有一非零根x2
(1)令f(x)=$\frac{a}{2}$x2+bx+c,求證:f(x1)f(x2)<0
(2)證明:方程$\frac{a}{2}$x2+bx+c=0必有一根介于x1和x2之間.

查看答案和解析>>

同步練習(xí)冊(cè)答案