相關(guān)習(xí)題
 0  252391  252399  252405  252409  252415  252417  252421  252427  252429  252435  252441  252445  252447  252451  252457  252459  252465  252469  252471  252475  252477  252481  252483  252485  252486  252487  252489  252490  252491  252493  252495  252499  252501  252505  252507  252511  252517  252519  252525  252529  252531  252535  252541  252547  252549  252555  252559  252561  252567  252571  252577  252585  266669 

科目: 來(lái)源: 題型:解答題

2.已知曲線(xiàn)C:ax2-xy+b=0在點(diǎn)P(2,t)處的切線(xiàn)l的方程5x-y-6=0.
(1)求a,b的值;
(2)求證:曲線(xiàn)C上各點(diǎn)處的切線(xiàn)斜率總不小于$\frac{7}{2}$.

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

1.設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(3)=0,則不等式$\frac{f(x)-f(-x)}{2}$>0的解集為(  )
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

查看答案和解析>>

科目: 來(lái)源: 題型:選擇題

20.下列函數(shù)中,在區(qū)間(0,+∞)上為減函數(shù)的是( 。
A.y=x+1B.y=$\sqrt{x+1}$C.y=($\frac{1}{2}$)xD.y=-$\frac{1}{x}$

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

19.已知f(x)=|sin$\frac{π}{4006}$x|,x∈[-2003,2003].
(1)寫(xiě)出滿(mǎn)足條件$\frac{1}{2}<$f(x)<$\frac{\sqrt{3}}{2}$的兩個(gè)整數(shù)x值(不要求證明);
(2)若-2003≤x1<x2<x3≤2003,且f(x2)<f(x1)<f(x3),求證x1x3<0且x1+x3>0.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

18.在四棱錐中,底面ABCD是正方形,側(cè)面VAD是正三角形,平面VAD⊥底面ABCD,G、H分別為AD、BC中點(diǎn).證明:
(1)AB⊥平面VAD;
(2)平面VGH⊥平面VBC.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

17.已知函數(shù)f(x)=lnx+bx+c在點(diǎn)(e,f(e))處的切線(xiàn)斜率為$\frac{e+1}{e}$,且切線(xiàn)在x,y軸上的截距相等.
(1)求f(x)的表達(dá)式;
(2)若f(x)滿(mǎn)足f(x)≥g(x)恒成立,則稱(chēng)f(x)是g(x)的一個(gè)“上界函數(shù)”,如果函數(shù)f(x)為g(x)=$\frac{t}{x}$-1nx+x(t為實(shí)數(shù))的一個(gè)“上界函數(shù)”,求證:函數(shù)g(x)的圖象上一定不存在不同的兩點(diǎn)(x1,g(x1)),(x2,g(x2))(其中x1,x2∈(0,+∞)),使得g(x1)=g(x2)成立.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

16.已知函數(shù)f(x)=lnx-a(x-1),(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x≥1時(shí),e${\;}^{a(x-\frac{1}{x})}$≥x,求a的取值范圍.

查看答案和解析>>

科目: 來(lái)源: 題型:填空題

15.已知函數(shù)f(x)=$\left\{\begin{array}{l}{{x}^{2}+ax,x≤1}\\{a{x}^{2}+x,x>1}\end{array}\right.$在R上單調(diào)遞減,在實(shí)數(shù)a的取值范圍是(-∞,-2].

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

14.在△ABC中,內(nèi)角A,B,C的對(duì)邊分別為a,b,c且$\sqrt{3}$acosC-2bcosA+$\sqrt{3}$ccosA=0.
(1)求角A的大;
(2)若a2=(2-$\sqrt{3}$)bc,試判斷△ABC是不是等腰三角形,并說(shuō)明理由.

查看答案和解析>>

科目: 來(lái)源: 題型:解答題

13.如圖,掛在下方的小球做上下運(yùn)動(dòng),小球在t(s)時(shí)相對(duì)于平衡位置(即靜止的位置)的高度為h(單位:cm),由下列關(guān)系式確定:h=2sin(t+$\frac{π}{4}$),t∈[0,+∞).
以橫軸表示時(shí)間,縱軸表示高度,作出這個(gè)函數(shù)在長(zhǎng)度為一個(gè)周期的閉區(qū)間的簡(jiǎn)圖,并回答下列問(wèn)題:
(1)小球在開(kāi)始振動(dòng)(t=0)時(shí)的位置在哪里?
(2)小球的最高、最低位置時(shí)h的值是多少?
(3)經(jīng)過(guò)多少時(shí)間小球振動(dòng)一次(即周期是多少)?
(4)小球每1秒能往復(fù)振動(dòng)多少次(即頻率是多少)?

查看答案和解析>>

同步練習(xí)冊(cè)答案