1.設(shè)奇函數(shù)f(x)在(0,+∞)上為增函數(shù),且f(3)=0,則不等式$\frac{f(x)-f(-x)}{2}$>0的解集為( 。
A.(-3,0)∪(3,+∞)B.(-3,0)∪(0,3)C.(-∞,-3)∪(3,+∞)D.(-∞,-3)∪(0,3)

分析 根據(jù)條件可得到f(-3)=0,f(x)在(-∞,0)上單調(diào)遞增,從而由不等式$\frac{f(x)-f(-x)}{2}>0$便可得到f(x)>0,討論x:x>0時,會得到f(x)>f(3);x<0時,會得到f(x)>f(-3),這樣根據(jù)f(x)的單調(diào)性便可得出這兩種情況下x的范圍,求并集便可得出原不等式的解集.

解答 解:f(x)為奇函數(shù),f(3)=0;
∴f(-3)=0;
f(x)在(0,+∞)上為增函數(shù);
∴f(x)在(-∞,0)上為增函數(shù);
∴$\frac{f(x)-f(-x)}{2}=f(x)>0$;
①若x>0,則f(x)>f(3);
∴x>3;
②若x<0,則f(x)>f(-3);
∴-3<x<0;
∴綜上得原不等式的解集為(-3,0)∪(3,+∞).
故選A.

點評 考查奇函數(shù)的定義,奇函數(shù)在對稱區(qū)間上的單調(diào)性特點,以及增函數(shù)的定義,根據(jù)單調(diào)性解不等式的方法.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.已知在正方體ABCD-A1B1C1D1中,M、E、F、N分別是A1B1、B1C1、C1D1、D1A1的中點.求證:
(1)EF∥平面ABCD;
(2)平面AMN∥平面EFDB.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:選擇題

12.已知某個幾何體的三視圖如下,根據(jù)圖中標(biāo)出的尺寸,那么可得這個幾何體最長的棱長是(  )
A.2B.$\sqrt{5}$C.2$\sqrt{2}$D.2$\sqrt{3}$

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:填空題

9.${∫}_{-1}^{1}$$\frac{{x}^{3}si{n}^{2}x}{{x}^{4}+{x}^{2}+1}$dx=0.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

16.已知函數(shù)f(x)=lnx-a(x-1),(a∈R).
(1)討論函數(shù)f(x)的單調(diào)性;
(2)當(dāng)x≥1時,e${\;}^{a(x-\frac{1}{x})}$≥x,求a的取值范圍.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

6.求下列函數(shù)的不定積分.
(1)∫$\frac{1}{\sqrt{x}+\sqrt{x+1}}$dx;
(2)∫$\frac{1}{(x-1)(x+2)}$dx.
(3)∫$\frac{{x}^{2}}{{a}^{2}+{x}^{2}}$dx.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

13.已知函數(shù)f(x)=nx-xn,x∈R.其中n∈N.n≥2.
(1)討論f(x)的單調(diào)性;
(2)設(shè)曲線y=f(x)與x軸正半軸的交點為P,曲線在點P處的切線方程為y=g(x),求證:對于任意的正實數(shù)x,都有f(x)≤g(x);
(3)設(shè)n=5,若關(guān)于x的方程f(x)=a(a為實數(shù))有兩個正實根x1,x2,求證:|x2-x1|<2-$\frac{a}{4}$.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

10.已知函數(shù)$f(x)=\sqrt{lg({2x-1})}$,求函數(shù)的定義域,并判斷它的奇偶性.

查看答案和解析>>

科目:高中數(shù)學(xué) 來源: 題型:解答題

11.求下列函數(shù)的導(dǎo)數(shù):
(1)y=sin43xcos34x;
(2)y=2(${e}^{\frac{x}{2}}+{e}^{{-}^{\frac{x}{2}}}$).

查看答案和解析>>

同步練習(xí)冊答案