相關(guān)習題
 0  252544  252552  252558  252562  252568  252570  252574  252580  252582  252588  252594  252598  252600  252604  252610  252612  252618  252622  252624  252628  252630  252634  252636  252638  252639  252640  252642  252643  252644  252646  252648  252652  252654  252658  252660  252664  252670  252672  252678  252682  252684  252688  252694  252700  252702  252708  252712  252714  252720  252724  252730  252738  266669 

科目: 來源: 題型:解答題

6.已知一次函數(shù)f(x)是R上的增函數(shù),g(x)=f(x)(x+m),且f(f(x))=16x+5
(1)求f(x)的解析式;
(2)若g(x)在(1,+∞)上單調(diào)遞增,求實數(shù)m的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

5.已知集合$A=\{x\left|{\frac{x-2}{x-7}<0\}}\right.$,B={x|x2-12x+20<0},C={x|5-a<x<a}
(1)求集合A,B;   
(2)求A∪B,(∁RA)∩B;   
(3)若C⊆B,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:解答題

4.用函數(shù)單調(diào)性的定義證明:函數(shù)$f(x)=\frac{x+1}{x-1}$在區(qū)間[2,6]上是減函數(shù).

查看答案和解析>>

科目: 來源: 題型:填空題

3.用區(qū)間表示下列集合:
(1)$\{x\left|{-\frac{1}{2}≤x<5\}}\right.$=[-$\frac{1}{2}$,5).
(2){x|x<1或2<x≤3}=(-∞,1)∪(2,3].

查看答案和解析>>

科目: 來源: 題型:選擇題

2.下列各組函數(shù)表示相等函數(shù)的是( 。
A.$f(x)=\left\{{\begin{array}{l}{x,x>0}\\{-x,x<0}\end{array}}\right.$與 g(x)=|x|B.f(x)=2x-1與 $g(x)=\frac{{2{x^2}-x}}{x}$
C.f(x)=|x-1|與 $g(t)=\sqrt{{{(t-1)}^2}}$D.$f(x)=\frac{x-1}{x-1}$與g(t)=1

查看答案和解析>>

科目: 來源: 題型:解答題

1.設(shè)有兩個命題:命題p:函數(shù)f(x)=-x2+ax+1在[1,+∞)上是單調(diào)減函數(shù);命題q:已知函數(shù)f(x)=2x3-6x2在[a,a+1]上單調(diào)遞減,若命題p∨q為真,p∧q為假,求實數(shù)a的取值范圍.

查看答案和解析>>

科目: 來源: 題型:選擇題

20.下列有關(guān)命題的敘述,
①若p∨q為真命題,則p∧q為真命題;
②“m>$\frac{1}{2}$”是$\frac{{x}^{2}}{m}$+$\frac{{y}^{2}}{2m-1}$=1為橢圓的充分必要條件;
③“若x+y=0,則是x,y互為相反數(shù)”的逆命題為真命題;
④命題“若x2-3x+2=0,則x=1或x=2”的逆否命題為“若x≠1或x≠2,則x2-3x=2≠0”.
其中錯誤的個數(shù)為( 。
A.1B.2C.3D.4

查看答案和解析>>

科目: 來源: 題型:選擇題

19.對某雜志社一個月內(nèi)每天收到的稿件數(shù)量進行了統(tǒng)計,得到樣本的莖葉圖(如圖),則該樣本的中位數(shù)、眾數(shù)分別為(  )
A.47、45B.45、47C.46、45D.45、46

查看答案和解析>>

科目: 來源: 題型:解答題

18.已知A,B為橢圓$C:\frac{x^2}{2}+{y^2}=1$上兩個不同的點,O為坐標原點.設(shè)直線OA,OB,AB的斜率分別為k1,k2,k.
(Ⅰ) 當k1=2時,求|OA|;
(Ⅱ) 當k1k2-1=k1+k2時,求k的取值范圍.

查看答案和解析>>

科目: 來源: 題型:填空題

17.已知等比數(shù)列{an}的公比q>0,前n項和為Sn.若2a3,a5,3a4成等差數(shù)列,a2a4a6=64,則q=2,Sn=$\frac{1}{2}$(2n-1).

查看答案和解析>>

同步練習冊答案