科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面為正方形,點(diǎn)是棱的中點(diǎn),,平面平面.
(Ⅰ)求證://平面;
(Ⅱ)求證:平面;
(Ⅲ) 設(shè),試判斷平面⊥平面能否成立;若成立,寫出的一個(gè)值(只需寫出結(jié)論).
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)在點(diǎn)處的切線方程;
(2)求函數(shù)單調(diào)遞增區(qū)間;
(3)若存在,使得(是自然對(duì)數(shù)的底數(shù)),求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】在直角坐標(biāo)系中,曲線:與直線()交于,兩點(diǎn).
(1)當(dāng)時(shí),分別求在點(diǎn)和處的切線方程;
(2)軸上是否存在點(diǎn),使得當(dāng)變動(dòng)時(shí),總有?說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)橢圓()的右焦點(diǎn)為,右頂點(diǎn)為,已知,其中為坐標(biāo)原點(diǎn),為橢圓的離心率.
(1)求橢圓的方程;
(2)設(shè)過點(diǎn)的直線與橢圓交于點(diǎn)(不在軸上),垂直于的直線與交于點(diǎn),與軸交于點(diǎn),若,且,求直線的斜率的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知拋物線的頂點(diǎn)在原點(diǎn),焦點(diǎn)在坐標(biāo)軸上,點(diǎn)為拋物線上一點(diǎn).
(1)求的方程;
(2)若點(diǎn)在上,過作的兩弦與,若,求證: 直線過定點(diǎn).
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù).
(1)若是函數(shù)的極值點(diǎn),1和是函數(shù)的兩個(gè)不同零點(diǎn),且,求.
(2)若對(duì)任意,都存在(為自然對(duì)數(shù)的底數(shù)),使得成立,求實(shí)數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,在四棱錐中,底面,底面是直角梯形,,是上的點(diǎn).
(1)求證: 平面平面;
(2)若是的中點(diǎn),且二面角的余弦值為,求直線與平面所成角的正弦值.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,某生態(tài)園將一三角形地塊的一角開辟為水果園種植桃樹,已知角為,的長度均大于米,現(xiàn)在邊界處建圍墻,在處圍竹籬笆.
(1)若圍墻總 長度為米,如何圍可使得三角形地塊的面積最大?
(2)已知段圍墻高米,段圍墻高米,造價(jià)均為每平方米元.若圍圍墻用了元,問如何圍可使竹籬笆用料最?
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)設(shè).
①若函數(shù)在處的切線過點(diǎn),求的值;
②當(dāng)時(shí),若函數(shù)在上沒有零點(diǎn),求的取值范圍.
(2)設(shè)函數(shù),且,求證: 當(dāng)時(shí),.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com