科目: 來源: 題型:
【題目】在某校組織的一次籃球定點投籃訓練中,規(guī)定每人最多投3次;在A處每投進一球得3分,在B處每投進一球得2分;如果前兩次得分之和超過3分即停止投籃,否則投第三次,某同學在A處的命中率q1為0.25,在B處的命中率為q2 , 該同學選擇先在A處投一球,以后都在B處投,用ξ表示該同學投籃訓練結(jié)束后所得的總分,其分布列為:
ξ | 0 | 2 | 3 | 4 | 5 |
p | 0.03 | 0.24 | 0.01 | 0.48 | 0.24 |
(1)求q2的值;
(2)求隨機變量ξ的數(shù)學期望Eξ;
(3)試比較該同學選擇都在B處投籃得分超過3分與選擇上述方式投籃得分超過3分的概率的大小.
查看答案和解析>>
科目: 來源: 題型:
【題目】200名職工年齡分布如圖所示,從中隨機抽取40名職工作樣本,采用系統(tǒng)抽樣方式,按1~200編號分為40組,分別為1~5,6~10,…,196~200,第5組抽取號碼為23,第9組抽取號碼為;若采用分層抽樣,40﹣50歲年齡段應(yīng)抽取人.
查看答案和解析>>
科目: 來源: 題型:
【題目】某媒體對“男女同齡退休”這一公眾關(guān)注的問題進行 了民意調(diào)査,右表是在某單位得到的數(shù)據(jù)(人數(shù)):
贊同 | 反對 | 合計 | |
男 | 5 | 6 | 11 |
女 | 11 | 3 | 14 |
合計 | 16 | 9 | 25 |
附表:
P(K2≥K) | 0.15 | 0.10 | 0.05 | 0.025 | 0.010 | 0.005 | 0.001 |
k | 2.072 | 2.706 | 3.841 | 5.024 | 6.635 | 7.879 | 10.828 |
.
(1 )能否有90%以上的把握認為對這一問題的看法與性別有關(guān)?
【答案】解:解:K2= ≈2.932>2.706,
由此可知,有90%的把握認為對這一問題的看法與性別有關(guān)
(1)進一步調(diào)查:(。⿵馁澩澳信g退休”16人中選出3人進行陳述發(fā)言,求事件“男士和女士各至少有1人發(fā)言”的概率; (ⅱ)從反對“男女同齡退休”的9人中選出3人進行座談,設(shè)參加調(diào)査的女士人數(shù)為X,求X的分布列和期望.
查看答案和解析>>
科目: 來源: 題型:
【題目】△ABC的內(nèi)角A,B,C的對邊分別為a,b,c,已知sinB+sinA(sinC﹣cosC)=0,a=2,c= ,則C=( )
A.
B.
C.
D.
查看答案和解析>>
科目: 來源: 題型:
【題目】二手車經(jīng)銷商小王對其所經(jīng)營的某一型號二手汽車的使用年數(shù)x(0<x≤10)與銷售價格y(單位:萬元/輛)進行整理,得到如表的對應(yīng)數(shù)據(jù):
使用年數(shù) | 2 | 4 | 6 | 8 | 10 |
售價 | 16 | 13 | 9.5 | 7 | 4.5 |
(1)試求y關(guān)于x的回歸直線方程;(參考公式: = , =y﹣ )
(2)已知每輛該型號汽車的收購價格為w=0.01x3﹣0.09x2﹣1.45x+17.2萬元,根據(jù)(1)中所求的回歸方程,預(yù)測x為何值時,小王銷售一輛該型號汽車所獲得的利潤L(x)最大?(利潤=售價﹣收購價)
查看答案和解析>>
科目: 來源: 題型:
【題目】有4個新畢業(yè)的老師要分配到四所學校任教,每個老師都有分配(結(jié)果用數(shù)字表示).
(1)共有多少種不同的分配方案?
(2)恰有一個學校不分配老師,有多少種不同的分配方案?
(3)某個學校分配了2個老師,有多少種不同的分配方案?
(4)恰有兩個學校不分配老師,有多少種不同的分配方案?
查看答案和解析>>
科目: 來源: 題型:
【題目】凸函數(shù)的性質(zhì)定理為:如果函數(shù)f(x)在區(qū)間D上是凸函數(shù),則對于區(qū)間D內(nèi)的任意x1 , x2 , …,xn , 有 ≤f( ),已知函數(shù)y=sinx在區(qū)間(0,π)上是凸函數(shù),則在△ABC中,sinA+sinB+sinC的最大值為
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù)f(x)=ax2﹣x+2a﹣1(a>0).
(1)若f(x)在區(qū)間[1,2]為單調(diào)增函數(shù),求a的取值范圍;
(2)設(shè)函數(shù)f(x)在區(qū)間[1,2]上的最小值為g(a),求g(a)的表達式;
(3)設(shè)函數(shù) ,若對任意x1 , x2∈[1,2],不等式f(x1)≥h(x2)恒成立,求實數(shù)a的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】下面給出了四個類比推理: ①由“若a,b,c∈R則(ab)c=a(bc)”類比推出“若a,b,c為三個向量則( ) = ( )”;
②“a,b為實數(shù),若a2+b2=0則a=b=0”類比推出“z1 , z2為復(fù)數(shù),若 ”;
③“在平面內(nèi),三角形的兩邊之和大于第三邊”類比推出“在空間中,四面體的任意三個面的面積之和大于第四個面的面積”;
④“在平面內(nèi),過不在同一條直線上的三個點有且只有一個圓”類比推出“在空間中,過不在同一個平面上的四個點有且只有一個球”.
上述四個推理中,結(jié)論正確的個數(shù)有( )
A.1個
B.2個
C.3個
D.4個
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com