科目: 來源: 題型:
【題目】設數(shù)列的通項公式為(, ),數(shù)列定義如下:對于正整數(shù), 是使得不等式成立的所有中的最小值.
(1)若, ,求;
(2)若, ,求數(shù)列的前項和公式;
(3)是否存在和,使得 ?如果存在,求和的取值范圍;如果不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】將數(shù)列中的所有項按第一行排3項,以下每一行比上一行多一項的規(guī)則排成如下數(shù)表:
……
記表中的第一列數(shù),,,…,構成數(shù)列.
(1)設,求m的值;
(2)若,對于任何,都有,且.求數(shù)列的通項公式.
(3)對于(2)中的數(shù)列,若上表中每一行的數(shù)按從左到右的順序均構成公比為q()的等比數(shù)列,且,求上表中第k()行所有項的和.
查看答案和解析>>
科目: 來源: 題型:
【題目】數(shù)列{2n﹣1}的前n項1,3,7,…,2n﹣1組成集合(n∈N*),從集合An中任取k(k=1,2,3,…,n)個數(shù),其所有可能的k個數(shù)的乘積的和為Tk(若只取一個數(shù),規(guī)定乘積為此數(shù)本身),記Sn=T1+T2+…+Tn,例如當n=1時,A1={1},T1=1,S1=1;當n=2時,A2={1,3},T1=1+3,T2=1×3,S2=1+3+1×3=7,試寫出Sn=__.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列滿足:,,.
(1)求的值;
(2)設,求證:數(shù)列是等比數(shù)列,并求出其通項公式;
(3)對任意的,,在數(shù)列中是否存在連續(xù)的項構成等差數(shù)列?若存在,寫出這項,并證明這項構成等差數(shù)列:若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,由半圓和部分拋物線合成的曲線稱為“羽毛球開線”,曲線與軸有兩個焦點,且經(jīng)過點
(1)求的值;
(2)設為曲線上的動點,求的最小值;
(3)過且斜率為的直線與“羽毛球形線”相交于點三點,問是否存在實數(shù)使得?若存在,求出的值;若不存在,請說明理由。
查看答案和解析>>
科目: 來源: 題型:
【題目】經(jīng)市場調查,某商品每噸的價格為萬元時,該商品的月供給量為噸,;月需求量為噸,,當該商品的需求量大于供給量時,銷售量等于供給量;當該商品的需求量不大于供給量時,銷售量等于需求量,該商品的月銷售額等于月銷售量與價格的乘積.
(1)已知,若某月該商品的價格為x=7,求商品在該月的銷售額(精確到1元);
(2)記需求量與供給量相等時的價格為均衡價格,若該商品的均衡價格不低于每噸6萬元,求實數(shù)的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】(本小題滿分13分)
已知函數(shù),(其中),其部分圖像如圖所示.
(I)求的解析式;
(II)求函數(shù)在區(qū)間上的最大值及相應的值。
查看答案和解析>>
科目: 來源: 題型:
【題目】已知定義在實數(shù)集上的函數(shù),把方程稱為函數(shù)的特征方程,特征方程的兩個實根,稱為的特征根.
(1)討論函數(shù)的奇偶性,并說明理由;
(2)求表達式;
(3)把函數(shù),的最大值記作、最小值記作,令,若恒成立,求的取值范圍.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù),若在區(qū)間內有且只有一個實數(shù),使得成立,則稱函數(shù)在區(qū)間內具有唯一零點.
(1)判斷函數(shù)在區(qū)間內是否具有唯一零點,說明理由:
(2)已知向量,,,證明在區(qū)間內具有唯一零點.
(3)若函數(shù)在區(qū)間內具有唯一零點,求實數(shù)的取值范圍.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com