科目: 來源: 題型:
【題目】(題文)(題文)已知橢圓的離心率為,過右焦點且斜率為1的直線交橢圓于A,B兩點, N為弦AB的中點,O為坐標(biāo)原點.
(1)求直線ON的斜率;
(2)求證:對于橢圓上的任意一點M,都存在,使得成立.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知曲線C的極坐標(biāo)方程是.以極點為平面直角坐標(biāo)系的原點,極軸為x軸的正半軸,建立平面直角坐標(biāo)系,直線l的參數(shù)方程是: (是參數(shù)).
(Ⅰ)將曲線C的極坐標(biāo)方程化為直角坐標(biāo)方程,將直線的參數(shù)方程化為普通方程;
(Ⅱ)若直線l與曲線C相交于A、B兩點,且,試求實數(shù)m的值.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知函數(shù).
(1)求函數(shù)的極值;
(2)對于曲線上的不同兩點,如果存在曲線上的點,且使得曲線在點處的切線,則稱為弦的伴隨直線,特別地,當(dāng)時,又稱為的—伴隨直線.
①求證:曲線的任意一條弦均有伴隨直線,并且伴隨直線是唯一的;
②是否存在曲線,使得曲線的任意一條弦均有—伴隨直線?若存在,給出一條這樣的曲線,并證明你的結(jié)論;若不存在,說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】直線ax+by=1與圓x2+y2=1相交于A,B兩點(其中a,b是實數(shù)),且△AOB是直角三角形(O是坐標(biāo)原點),則點P(a,b)與點(0,1)之間距離的最小值為( ).
A.0B.C.-1D.+1
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖a是某市參加2012年高考的學(xué)生身高條形統(tǒng)計圖,從左到右的各條形表示的學(xué)生人數(shù)依次記為、、…、[如表示身高(單位:cm)在內(nèi)的學(xué)生人數(shù)].圖b是統(tǒng)計圖a中身高在一定范圍內(nèi)學(xué)生人數(shù)的一個算法流程圖.現(xiàn)要統(tǒng)計身高在(含160cm,不含180cm)的學(xué)生人數(shù),那么在流程圖中的判斷框內(nèi)應(yīng)填寫的條件是( )
A.B.C.D.
查看答案和解析>>
科目: 來源: 題型:
【題目】《數(shù)書九章》是中國南宋時期杰出數(shù)學(xué)家秦九韶的著作,全書十八卷共八十一個問題,分為九類,每類九個問題,《數(shù)書九章》中記錄了秦九昭的許多創(chuàng)造性成就,其中在卷五“三斜求積”中提出了已知三角形三邊,,求面積的公式,這與古希臘的海倫公式完成等價,其求法是:“以小斜冪并大斜冪減中斜冪,余半之,自乘于上,以小斜冪乘大斜冪減上,余四約之,為實,一為從隅,開平方得積.”若把以上這段文字寫成公式,即.現(xiàn)有滿足,且的面積,請運用上述公式判斷下列命題正確的是
A.周長為
B.三個內(nèi)角,,成等差數(shù)列
C.外接圓直徑為
D.中線的長為
查看答案和解析>>
科目: 來源: 題型:
【題目】設(shè)函數(shù),.
(1)若,求函數(shù)的單調(diào)區(qū)間;
(2)若,且函數(shù)在區(qū)間內(nèi)有兩個極值點,求實數(shù)a的取值范圍;
(3)求證:對任意的正數(shù)a,都存在實數(shù)t,滿足:對任意的,.
查看答案和解析>>
科目: 來源: 題型:
【題目】已知數(shù)列滿足:(常數(shù)),(,).數(shù)列滿足:().
(1)求,的值;
(2)求數(shù)列的通項公式;
(3)是否存在k,使得數(shù)列的每一項均為整數(shù)?若存在,求出k的所有可能值;若不存在,請說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】如圖,,是某景區(qū)的兩條道路(寬度忽略不計,為東西方向),Q為景區(qū)內(nèi)一景點,A為道路上一游客休息區(qū),已知,(百米),Q到直線,的距離分別為3(百米),(百米),現(xiàn)新修一條自A經(jīng)過Q的有軌觀光直路并延伸至道路于點B,并在B處修建一游客休息區(qū).
(1)求有軌觀光直路的長;
(2)已知在景點Q的正北方6百米的P處有一大型組合音樂噴泉,噴泉表演一次的時長為9分鐘,表演時,噴泉噴灑區(qū)域以P為圓心,r為半徑變化,且t分鐘時,(百米)(,).當(dāng)噴泉表演開始時,一觀光車S(大小忽略不計)正從休息區(qū)B沿(1)中的軌道以(百米/分鐘)的速度開往休息區(qū)A,問:觀光車在行駛途中是否會被噴泉噴灑到,并說明理由.
查看答案和解析>>
科目: 來源: 題型:
【題目】在平面直角坐標(biāo)系中,已知橢圓E:()過點,其心率等于.
(1)求橢圓E的標(biāo)準(zhǔn)方程;
(2)若A,B分別是橢圓E的左,右頂點,動點M滿足,且橢圓E于點P.
①求證:為定值:
②設(shè)與以為直徑的圓的另一交點為Q,求證:直線經(jīng)過定點.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com