方程2=x+2x+1的實數(shù)解的個數(shù)是 . A. 1 B. 2 C. 3 D.以上都不對 查看更多

 

題目列表(包括答案和解析)

方程log2(x+4)=2x的實數(shù)解的個數(shù)是

[  ]

A.0個

B.1個

C.2個

D.3個

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0)

定義:(1)設(x)是函數(shù)y=f(x)的導數(shù)y=(x)的導數(shù),若方程(x)=0有實數(shù)解x0,則稱點為函數(shù)y=f(x)的“拐點”;

定理:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點對稱.

己知f(x)=x3-3x2+2x+2

求:(Ⅰ)求函數(shù)f(x)的“拐點”A的坐標

(Ⅱ)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)

(Ⅲ)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設是函數(shù)y=f(x)的導數(shù)y=的導數(shù),若方程=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;

定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.

己知f(x)=x3-3x2+2x+2,請回答下列問題:

(1)求函數(shù)f(x)的“拐點”A的坐標

(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)

(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設(x)是函數(shù)y=f(x)的導數(shù)y=(x)的導數(shù),若方程(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;

定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.

己知f(x)=x3-3x2+2x+2,請回答下列問題:

(1)求函數(shù)f(x)的“拐點”A的坐標

(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)

(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>

對于三次函數(shù)f(x)=ax3+bx2+cx+d(a≠0).

定義:(1)設(x)是函數(shù)y=f(x)的導數(shù)y=(x)的導數(shù),若方程(x)=0有實數(shù)解x0,則稱點(x0,f(x0))為函數(shù)y=f(x)的“拐點”;

定義:(2)設x0為常數(shù),若定義在R上的函數(shù)y=f(x)對于定義域內(nèi)的一切實數(shù)x,都有f(x0+x)+f(x0-x)=2f(x0)成立,則函數(shù)y=f(x)的圖象關于點(x0,f(x0))對稱.

己知f(x)=x3-3x2+2x+2,請回答下列問題:

(1)求函數(shù)f(x)的“拐點”A的坐標

(2)檢驗函數(shù)f(x)的圖象是否關于“拐點”A對稱,對于任意的三次函數(shù)寫出一個有關“拐點”的結(jié)論(不必證明)

(3)寫出一個三次函數(shù)G(x),使得它的“拐點”是(-1,3)(不要過程)

查看答案和解析>>


同步練習冊答案