考點(diǎn):分?jǐn)?shù)的拆項(xiàng)
專題:分?jǐn)?shù)和百分?jǐn)?shù)
分析:由
+
=
,可得
+=,所以7A+13B=54,因?yàn)锳和B都是自然數(shù),所以13B≤54,可得B≤4.15,因此B=0,1,2,3,4;然后根據(jù)B的取值分類討論,求出A的值,進(jìn)而求出A+B的值即可.
解答:
解:由
+
=
,可得
+=,
所以7A+13B=54,
因?yàn)锳和B都是自然數(shù),
所以13B≤54,可得B≤4.15,
因此B=0,1,2,3,4;
(1)B=0時,A=(54-13×0)÷7=54÷7=7
,
7
不是自然數(shù),不符合題意;
(2)B=1時,A=(54-13×1)÷7=41÷7=5
,
5
不是自然數(shù),不符合題意;
(3)B=2時,A=(54-13×2)÷7=28÷7=4,
4是自然數(shù),符合題意,
此時A+B=4+2=6;
(4)B=3時,A=(54-13×3)÷7=15÷7=2
,
2
不是自然數(shù),不符合題意;
(5)B=4時,A=(54-13×4)÷7=2÷7=
,
不是自然數(shù),不符合題意;
綜上,可得A=4,B=2時,A+B=6.
故答案為:6.
點(diǎn)評:此題主要考查了通分的方法,解答此題的關(guān)鍵是判斷出:7A+13B=54.