【題目】1)操作思考:如圖1,在平面直角坐標(biāo)系中,等腰直角的直角頂點(diǎn)在原點(diǎn),將其繞著點(diǎn)旋轉(zhuǎn),若頂點(diǎn)恰好落在點(diǎn)處.則①的長為______;②點(diǎn)的坐標(biāo)為______(直接寫結(jié)果)

2)感悟應(yīng)用:如圖2,在平面直角坐標(biāo)系中,將等腰直角如圖放置,直角頂點(diǎn),點(diǎn),試求直線的函數(shù)表達(dá)式.

3)拓展研究:如圖3,在直角坐標(biāo)系中,點(diǎn),過點(diǎn)軸,垂足為點(diǎn),作軸,垂足為點(diǎn)是線段上的一個動點(diǎn),點(diǎn)是直線上一動點(diǎn).問是否存在以點(diǎn)為直角頂點(diǎn)的等腰直角,若存在,請直接寫出此時點(diǎn)的坐標(biāo),若不存在,請說明理由.

【答案】1;(2;(3

【解析】

1)根據(jù)勾股定理可得OA長,由對應(yīng)邊相等可得B點(diǎn)坐標(biāo);

2)通過證明得出點(diǎn)B坐標(biāo),用待定系數(shù)法求直線的函數(shù)表達(dá)式;

(3)設(shè)點(diǎn)Q坐標(biāo)為,可通過證三角形全等的性質(zhì)可得a的值,由Q點(diǎn)坐標(biāo)可間接求出P點(diǎn)坐標(biāo).

解:(1)如圖1,作軸于F,軸于E.

A點(diǎn)坐標(biāo)可知

中,根據(jù)勾股定理可得;

為等腰直角三角形

軸于F,軸于E

所以B點(diǎn)坐標(biāo)為:

2)如圖,過點(diǎn)軸.

為等腰直角三角形

,

,

設(shè)直線的表達(dá)式為

代入,得

,

解得,

∴直線的函數(shù)表達(dá)式

3)如圖3,分兩種情況,點(diǎn)Q可在x軸下方和點(diǎn)Q在x軸上方

設(shè)點(diǎn)Q坐標(biāo)為,點(diǎn)P坐標(biāo)為

當(dāng)點(diǎn)Qx軸下方時,連接,過點(diǎn) 交其延長線于M,則M點(diǎn)坐標(biāo)為

為等腰直角三角形

由題意得

解得 ,所以

當(dāng)點(diǎn)Qx軸上方時,連接,過點(diǎn) 交其延長線于N,則N點(diǎn)坐標(biāo)為

同理可得,

由題意得

解得 ,所以

綜上的坐標(biāo)為:

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知為直線上的一點(diǎn),且為直角,平分.

1)如圖1,若,則等于多少度;

2)如圖2,若平分,且,求的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】閱讀下列材料,完成任務(wù):

自相似圖形

定義:若某個圖形可分割為若干個都與它相似的圖形,則稱這個圖形是自相似圖形.例如:正方形ABCD中,點(diǎn)E、F、G、H分別是AB、BC、CD、DA邊的中點(diǎn),連接EG,HF交于點(diǎn)O,易知分割成的四個四邊形AEOH、EBFO、OFCG、HOGD均為正方形,且與原正方形相似,故正方形是自相似圖形.

任務(wù):

(1)圖1中正方形ABCD分割成的四個小正方形中,每個正方形與原正方形的相似比為   ;

(2)如圖2,已知ABC中,ACB=90°,AC=4,BC=3,小明發(fā)現(xiàn)ABC也是“自相似圖形”,他的思路是:過點(diǎn)C作CDAB于點(diǎn)D,則CD將ABC分割成2個與它自己相似的小直角三角形.已知△ACD∽△ABC,則ACD與ABC的相似比為   ;

(3)現(xiàn)有一個矩形ABCD是自相似圖形,其中長AD=a,寬AB=b(a>b).

請從下列A、B兩題中任選一條作答:我選擇   題.

A:①如圖3﹣1,若將矩形ABCD縱向分割成兩個全等矩形,且與原矩形都相似,則a=   (用含b的式子表示);

如圖3﹣2若將矩形ABCD縱向分割成n個全等矩形,且與原矩形都相似,則a=   (用含n,b的式子表示);

B:①如圖4﹣1,若將矩形ABCD先縱向分割出2個全等矩形,再將剩余的部分橫向分割成3個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含b的式子表示);

如圖4﹣2,若將矩形ABCD先縱向分割出m個全等矩形,再將剩余的部分橫向分割成n個全等矩形,且分割得到的矩形與原矩形都相似,則a=   (用含m,n,b的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,正方形網(wǎng)格中的ABC,若小方格邊長為1,格點(diǎn)ABC(頂點(diǎn)是網(wǎng)格線交點(diǎn)的三角形)的頂點(diǎn)A,C的坐標(biāo)分別為(﹣1,1),(0,﹣2),請你根據(jù)所學(xué)的知識.

(1)在如圖所示的網(wǎng)格平面內(nèi)作出平面直角坐標(biāo)系;

(2)作出ABC關(guān)于y軸對稱的三角形A1B1C1;

(3)判斷ABC的形狀,并求出ABC的面積.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】為培養(yǎng)學(xué)生的特長愛好,提高學(xué)生的綜合素質(zhì),某校音樂特色學(xué)習(xí)斑準(zhǔn)備從京東商城里一次性購買若干個尤克里里和豎笛(每個尤克里里的價格相同,每個豎笛的價格相同),購買個豎笛和個尤克里里共需元;豎笛單價比尤克里里單價的一半少元.

(1)求豎笛和尤克里里的單價各是多少元?

(2)根據(jù)學(xué)校實(shí)際情況,需一次性購買豎笛和尤克里里共個,但要求購買豎笛和尤克里里的總費(fèi)用不超過元,則該校最多可以購買多少個尤克里里?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中,,高AD=12cm,BC的長為(

A. 14 cm B. 4 cm C. 14cm4 cm D. 以上都不對

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,公路MN和公路PQ在點(diǎn)P處交匯,且∠QPN30°,點(diǎn)A處有一所中學(xué),AP160m.若拖拉機(jī)行駛時,周圍100m以內(nèi)會受到噪音的影響,那么拖拉機(jī)在公路MN上沿PN方向行駛時:

(1)學(xué)校是否會受到噪聲影響?

(2)如果不受影響,請說明理由;如果受影響,已知拖拉機(jī)的速度為18km/h,那么學(xué)校受影響的時間為多少秒?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】【操作發(fā)現(xiàn)】

如圖,在邊長為1個單位長度的小正方形組成的網(wǎng)格中,ABC的三個頂點(diǎn)均在格點(diǎn)上.

(1)請按要求畫圖:將ABC繞點(diǎn)A按順時針方向旋轉(zhuǎn)90°,點(diǎn)B的對應(yīng)點(diǎn)為B′,點(diǎn)C的對應(yīng)點(diǎn)為C′,連接BB′;

(2)在(1)所畫圖形中,∠AB′B=   

【問題解決】

如圖,在等邊三角形ABC中,AC=7,點(diǎn)P在ABC內(nèi),且∠APC=90°,BPC=120°,求APC的面積.

小明同學(xué)通過觀察、分析、思考,對上述問題形成了如下想法:

想法一:將APC繞點(diǎn)A按順時針方向旋轉(zhuǎn)60°,得到AP′B,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系;

想法二:將APB繞點(diǎn)A按逆時針方向旋轉(zhuǎn)60°,得到AP′C′,連接PP′,尋找PA,PB,PC三條線段之間的數(shù)量關(guān)系.

請參考小明同學(xué)的想法,完成該問題的解答過程.(一種方法即可)

【靈活運(yùn)用】

如圖,在四邊形ABCD中,AEBC,垂足為E,∠BAE=∠ADC,BE=CE=2,CD=5,AD=kAB(k為常數(shù)),求BD的長(用含k的式子表示).

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,點(diǎn)A,B的坐標(biāo)分別為(1,4)和(4,4),拋物線y=a(x+m)2+n的頂點(diǎn)在線段AB上,與x軸交于C,D兩點(diǎn)(C在D的左側(cè)),點(diǎn)C的橫坐標(biāo)最小值為﹣3,則點(diǎn)D的橫坐標(biāo)的最大值為______

查看答案和解析>>

同步練習(xí)冊答案