【題目】如圖,已知∠1=∠2,∠3=∠4,∠5=∠6,試判斷ED與FB的位置關(guān)系,并說明為什么.
【答案】BF、DE互相平行
【解析】試題分析:設AB與DE相交于H,由∠3=∠4,根據(jù)內(nèi)錯角相等,兩直線平行可證得BD∥CF,可得到∠5=∠BAF;已知∠5=∠6,即可得∠BAF=∠6,根據(jù)同位角相等,兩直線平行可得AB∥CD,根據(jù)平行線的性質(zhì)可得∠2=∠EHA,由此可得到∠1=∠EHA,根據(jù)同位角相等,兩直線平行即可判斷BF∥DE.
試題解析:
BF、DE互相平行;
理由:如圖;
∵∠3=∠4,
∴BD∥CF,
∴∠5=∠BAF,
又∵∠5=∠6,
∴∠BAF=∠6,
∴AB∥CD,
∴∠2=∠EHA,
又∵∠1=∠2,即∠1=∠EHA,
∴BF∥DE.
科目:初中數(shù)學 來源: 題型:
【題目】已知CD是經(jīng)過∠BCA頂點C的一條直線,CA=CB.E、F分別是直線CD上兩點,且∠BEC=∠CFA=∠.
(1)若直線CD經(jīng)過∠BCA的內(nèi)部,且E、F在射線CD上,請解決下面問題:
①如圖1若∠BCA=90°,∠=90°、探索三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
②如圖2,若0°<∠BCA<180°, 請?zhí)砑右粋關(guān)于∠與∠BCA關(guān)系的條件___ ____使①中的結(jié)論仍然成立;
(2)如圖3,若直線CD經(jīng)過∠BCA的外部,∠=∠BCA,請寫出三條線段EF、BE、AF的數(shù)量關(guān)系并證明你的結(jié)論.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,,點D是邊AB上一點,E為AC的中點,過點C作CF∥AB, 交DE的延長線于點F。
(1)求證:DE=FE;
(2)若CD=CF,∠A=40°,求∠BCD的度數(shù)。
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖為某城市部分街道示意圖,四邊形ABCD為正方形,點G在對角線BD上,GE⊥CD,GF⊥BC,AD=1500m,小敏行走的路線為B→A→G→E,小聰行走的路線為B→A→D→E→F.若小敏行走的路程為3100m,則小聰行走的路程為 m.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知,直線AB∥CD
(1)如圖1,點E在直線BD的左側(cè),猜想∠ABE、∠CDE、∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(2)如圖2,點E在直線BD的左側(cè),BF、DF分別平分∠ABE、∠CDE,猜想∠BFD和∠BED的數(shù)量關(guān)系,并證明你的結(jié)論;
(3)如圖3,點E在直線BD的右側(cè),BF、DF分別平分∠ABE、∠CDE;那么第(2)題中∠BFD和∠BED的數(shù)量關(guān)系的猜想是否仍成立?如果成立,請證明;如果不成立,請寫出你的猜想,并證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】一個零件的形狀如圖所示,工人師傅按規(guī)定做得∠B=90°,
AB=3,BC=4,CD=12,AD=13,假如這是一塊鋼板,你能幫工人師傅計算一下這塊鋼板的面積嗎?
【答案】面積等于36
【解析】試題分析:利用勾股定理求AC,再利用勾股定理逆定理求∠ACB=90°,分別求的面積.
試題解析:
∠B=90°,AB=3,BC=4,AC=
=169,
所以∠ACD=90°,
.
所以面積是36.
【題型】解答題
【結(jié)束】
22
【題目】如圖,在所給正方形網(wǎng)格(每個小網(wǎng)格的邊長是1)圖中完成下列各題.
(1)格點△ABC(頂點均在格點上)的面積=_________;
(2)畫出格點△ABC關(guān)于直線DE對稱的△A1B1C1;
(3)在DE上畫出點P,使PB+PC最小,并求出這個最小值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在所給正方形網(wǎng)格(每個小網(wǎng)格的邊長是1)圖中完成下列各題.
(1)格點△ABC(頂點均在格點上)的面積=_________;
(2)畫出格點△ABC關(guān)于直線DE對稱的△A1B1C1;
(3)在DE上畫出點P,使PB+PC最小,并求出這個最小值.
【答案】(1)面積等于5(2)圖形見解析(3)最小值是根號17
【解析】試題分析:(1)利用勾股定理求出三角形邊長,并證明是直角三角形求面積.(2)畫出A,B,C的對稱點A1,B2,C3,連接三角形.(3)利用對稱利用兩點之間直線最短求最小值.
試題解析:
(1)分別利用勾股定理求得AC=2,AB=,BC=, ,所以∠ACB=90°,面積等于=5.
(2)畫出A,B,C的對稱點A1,B2,C3,連接三角形.如下圖.
(3)作B點對稱B’,連接B’C交DE于P,B’P+PC=BP+CP,所以使PB+PC最小.
利用勾股定理B’C=,
所以最小值是根號17.
點睛:平面上最短路徑問題
(1)歸于“兩點之間的連線中,線段最短”.凡屬于求“變動的兩線段之和的最小值”時,大都應用這一模型.
(2)歸于“三角形兩邊之差小于第三邊”.凡屬于求“變動的兩線段之差的最大值”時,大都應用這一模型.
(3)平面圖形中,直線同側(cè)兩點到直線上一點距離之和最短問題.
【題型】解答題
【結(jié)束】
23
【題目】已知一次函數(shù)y=kx+7的圖像經(jīng)過點A(2,3).
(1)求k的值;
(2)判斷點B(-1,8),C(3,1)是否在這個函數(shù)的圖像上,并說明理由;
(3)當-3<x<-1時,求y的取值范圍.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】解不等式組: .請結(jié)合題意填空,完成本體的解法.
(1)解不等式(1),得________;
(2)解不等式(2),得________;
(3)把不等式 (1)和 (2)的解集在數(shù)軸上表示出來.
(4)原不等式的解集為________.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com