【題目】如圖,圖中直線表示三條相互交叉的路,現(xiàn)要建一個(gè)貨運(yùn)中轉(zhuǎn)站,要求它到三條公路的距離相等,則選擇的地址有( 。

A. 4B. 3C. 2D. 1

【答案】A

【解析】

根據(jù)角平分線上的點(diǎn)到角兩邊的距離相等解答即可.

解:∵△ABC內(nèi)角平分線的交點(diǎn)到三角形三邊的距離相等,

∴△ABC內(nèi)角平分線的交點(diǎn)滿足條件;

如圖:點(diǎn)P△ABC兩條外角平分線的交點(diǎn),

過點(diǎn)PPE⊥AB,PD⊥BCPF⊥AC,

∴PE=PF,PF=PD,

∴PE=PF=PD

點(diǎn)P△ABC的三邊的距離相等,

∴△ABC兩條外角平分線的交點(diǎn)到其三邊的距離也相等,滿足這條件的點(diǎn)有3個(gè);

綜上,到三條公路的距離相等的點(diǎn)有4個(gè),

可供選擇的地址有4個(gè).

故選:A

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線EFMN相交于點(diǎn)O,∠MOE=30°,將一直角三角尺的直角頂點(diǎn)與點(diǎn)O重合,直角邊OAMN重合,OB∠NOE內(nèi)部.操作:將三角尺繞點(diǎn)O以每秒的速度沿順時(shí)針方向旋轉(zhuǎn)一周,設(shè)運(yùn)動(dòng)時(shí)間為t(s).

(1)當(dāng)t為何值時(shí),直角邊OB恰好平分∠NOE?此時(shí)OA是否平分∠MOE?請(qǐng)說明理由;

(2)若在三角尺轉(zhuǎn)動(dòng)的同時(shí),直線EF也繞點(diǎn)O以每秒的速度順時(shí)針方向旋轉(zhuǎn)一周,當(dāng)一方先完成旋轉(zhuǎn)一周時(shí),另一方同時(shí)停止轉(zhuǎn)動(dòng).

當(dāng)t為何值時(shí),OE平分∠AOB?

②OE能否平分∠NOB?若能請(qǐng)直接寫出t的值;若不能,請(qǐng)說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】隨著“互聯(lián)網(wǎng)+”時(shí)代的到來,一種新型打車方式受到大眾歡迎,該打車方式的總費(fèi)用由里程費(fèi)和耗時(shí)費(fèi)組成,其中里程費(fèi)按x元/公里計(jì)算,耗時(shí)費(fèi)按y元/分鐘計(jì)算(總費(fèi)用不足9元按9元計(jì)價(jià)).小明、小剛兩人用該打車方式出行,按上述計(jì)價(jià)規(guī)則,其打車總費(fèi)用、行駛里程數(shù)與打車時(shí)間如表:

時(shí)間(分鐘)

里程數(shù)(公里)

車費(fèi)(元)

小明

8

8

12

小剛

12

10

16

(1)求x,y的值;

(2)如果小華也用該打車方式,打車行駛了11公里,用了14分鐘,那么小華的打車總費(fèi)用為多少?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】.如圖,矩形ABCD中,OAC中點(diǎn),過點(diǎn)O的直線分別與AB、CD交于點(diǎn)E、F,連結(jié)BFAC于點(diǎn)M,連結(jié)DE、BO.若∠COB=60°FO=FC,則下列結(jié)論:①FB垂直平分OC;②△EOB≌△CMB③DE=EF;④SAOESBCM=23.其中正確結(jié)論的個(gè)數(shù)是( )

A. 4個(gè) B. 3個(gè) C. 2個(gè) D. 1個(gè)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD是平行四邊形,E,F(xiàn)是對(duì)角線BD上的點(diǎn),∠1=∠2.

求證:(1)BE=DF;(2)AF∥CE.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】觀察算式:1×3+1=4=22;2×4+1=9=32;3×5+1=16=42;4×6+1=25=52,…

(1)請(qǐng)根據(jù)你發(fā)現(xiàn)的規(guī)律填空:6×8+1=(   2;

(2)用含n的等式表示上面的規(guī)律:   ;

(3)用找到的規(guī)律解決下面的問題:

計(jì)算:(1+)(1+)(1+)(1+)…(1+

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在四邊形ABCD內(nèi)找一點(diǎn)O,使它到四邊形四個(gè)頂點(diǎn)的距離之和OA+OB+OC+OD最小,正確的作法是連接AC、BD交于點(diǎn)O,則點(diǎn)O就是要找的點(diǎn),請(qǐng)你用所學(xué)過的數(shù)學(xué)知識(shí)解釋這一道理__________________________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是由一個(gè)角為60°且邊長(zhǎng)為1的菱形組成的網(wǎng)格,每個(gè)菱形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A,B,C都在格點(diǎn)上,則tan∠BAC=_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知如圖,矩形OABC放置于平面直角坐標(biāo)系中,點(diǎn)O與原點(diǎn)重合,點(diǎn)Ax軸正半軸上,點(diǎn)Cy軸正半軸上,點(diǎn)B的坐標(biāo)為(6,3),點(diǎn)D是邊BC上的一動(dòng)點(diǎn),連接OD,作點(diǎn)C關(guān)于直線OD的對(duì)稱點(diǎn)C′.

(1)若點(diǎn)C、C′、A在一直線上時(shí),求點(diǎn)D的坐標(biāo);

(2)若點(diǎn)C′到矩形兩對(duì)邊所在直線距離之比為1:2時(shí),求點(diǎn)C′的坐標(biāo);

(3)若連接BC′,則線段BC′的長(zhǎng)度范圍是   

查看答案和解析>>

同步練習(xí)冊(cè)答案