【題目】如圖是由一個(gè)角為60°且邊長(zhǎng)為1的菱形組成的網(wǎng)格,每個(gè)菱形的頂點(diǎn)稱為格點(diǎn),點(diǎn)A,B,C都在格點(diǎn)上,則tan∠BAC=_____

【答案】

【解析】分析:設(shè)AB中點(diǎn)為D,連接CD、BC,由三線合一可得CDAB,由△EDC為等邊三角形求出DC=ED=2,30°角的性質(zhì)得MO=AM=再由勾股定理得AO=,然后根據(jù)銳角三角函數(shù)的定義求得答案.

詳解:由圖形可知:AB的中點(diǎn)是格點(diǎn),設(shè)中點(diǎn)為D,連接CD、BC,

AC=BC,

CDAB

在菱形EDFC中,∵∠DEC=60°,ED=EC=2,

∴△EDC為等邊三角形,

DC=ED=2,

在菱形AMDN中,連接MN,與AD交于點(diǎn)O,

ADMN,MAD=30°,

MO=AM=AO=,

AD=,

tanBAC=

故答案為:

練習(xí)冊(cè)系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,D,E為△ABCAB上兩點(diǎn),FH分別在AC,BC上,∠1+2180°

1)求證:EFDH;

2)若∠ACB90°,∠DHB25°,求∠EFC的度數(shù).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,圖中直線表示三條相互交叉的路,現(xiàn)要建一個(gè)貨運(yùn)中轉(zhuǎn)站,要求它到三條公路的距離相等,則選擇的地址有( 。

A. 4B. 3C. 2D. 1

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】矩形一個(gè)內(nèi)角的平分線把矩形的一邊分成,則矩形的周長(zhǎng)為(

A. B. C. D. 以上都不對(duì)

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】某中學(xué)開展“我的中國(guó)夢(mèng)”演講比賽活動(dòng),九(1)、九(2)班根據(jù)初賽成績(jī)各選出5名選手參加復(fù)賽,兩個(gè)班各選出的5名選手的復(fù)賽成績(jī)(滿分為100分)如下圖所示.

1)根據(jù)如圖,分別求出兩班復(fù)賽的平均成績(jī)和方差;

2)根據(jù)(1)的計(jì)算結(jié)果,分析哪個(gè)班級(jí)5名選手的復(fù)賽成績(jī)波動(dòng)。

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】我們可用表示以為自變量的函數(shù),如一次函數(shù),可表示為,且,,定義:若存在實(shí)數(shù),使成立,則稱的不動(dòng)點(diǎn),例如:,令,得,那么的不動(dòng)點(diǎn)是1.

1)已知函數(shù),求的不動(dòng)點(diǎn).

2)函數(shù)是常數(shù))的圖象上存在不動(dòng)點(diǎn)嗎?若存在,請(qǐng)求出不動(dòng)點(diǎn);若不存在,請(qǐng)說(shuō)明理由;

3)已知函數(shù)),當(dāng)時(shí),若一次函數(shù)與二次函數(shù)的交點(diǎn)為,即兩點(diǎn)的橫坐標(biāo)是函數(shù)的不動(dòng)點(diǎn),且兩點(diǎn)關(guān)于直線對(duì)稱,求的取值范圍.

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】如圖,在△ABC中,AB=AC,以AB為直徑的⊙O與BC交于點(diǎn)D,過(guò)點(diǎn)D作⊙O的切線與AC交于點(diǎn)F.

(1)求證:EF=CF;

(2)若AE=8,cosA=,求DF的長(zhǎng).

查看答案和解析>>

科目:初中數(shù)學(xué) 來(lái)源: 題型:

【題目】已知y2x成正比例,當(dāng)x2時(shí),y6

1)求yx之間的函數(shù)解析式.

2)在所給直角坐標(biāo)系中畫出函數(shù)圖象.

3)由函數(shù)圖象直接寫出當(dāng)﹣2y2時(shí),自變量x的取值范圍.

查看答案和解析>>

同步練習(xí)冊(cè)答案