【題目】“校園手機”現(xiàn)象越來越受到社會的關注.小麗在“統(tǒng)計實習”活動中隨機調查了學校若干名學生家長對“中學生帶手機到學!爆F(xiàn)象的看法,統(tǒng)計整理并制作了如下的統(tǒng)計圖:
(1)求這次調查的家長總數(shù)及家長表示“無所謂”的人數(shù),并補全圖①;
(2)求圖②中表示家長“無所謂”的圓心角的度數(shù);
(3)從這次接受調查的家長中,隨機抽查一個,恰好是“不贊成”態(tài)度的家長的概率是多少.
【答案】
(1)解:家長總數(shù):200÷50%=400名,
表示“無所謂”人數(shù):400﹣200﹣16﹣400×26%=80名,補全圖①,
(2)解:80÷400×360°=72°
(3)解:16÷400=
【解析】(1)由圖象可以得出基本贊成的有200人占50%,可以求出總數(shù),由總數(shù)可以求出非常贊成的人數(shù)和無所謂的人數(shù).(2)由(1)的總數(shù)求出無所謂的百分比再乘以360°就可以求出圓心角的度數(shù).(3)這次受調查的家長不贊成的人數(shù)除以總數(shù)就是抽到恰好是“不贊成”態(tài)度的家長的概率.
【考點精析】認真審題,首先需要了解扇形統(tǒng)計圖(能清楚地表示出各部分在總體中所占的百分比.但是不能清楚地表示出每個項目的具體數(shù)目以及事物的變化情況),還要掌握條形統(tǒng)計圖(能清楚地表示出每個項目的具體數(shù)目,但是不能清楚地表示出各個部分在總體中所占的百分比以及事物的變化情況)的相關知識才是答題的關鍵.
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,一次函數(shù)y=ax+b(a≠0)的圖象與反比例函數(shù)y= (k≠0)的圖象交于A、B兩點,與x軸交于點C,過點A作AH⊥x軸于點H,點O是線段CH的中點,AC=4 ,cos∠ACH= ,點B的坐標為(4,n)
(1)求該反比例函數(shù)和一次函數(shù)的解析式;
(2)求△BCH的面積.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC 中,AB=AC=6cm,∠B=∠C,BC=4cm,點 D 為 AB的中點.
(1)如果點 P 在線段 BC 上以 1cm/s 的速度由點 B 向點 C 運動,同時,點 Q 在線段 CA 上由點 C 向點 A 運動.
①若點 Q 的運動速度與點 P 的運動速度相等,經過 1 秒后,△BPD 與△CQP 是否全等,請說明理由;
②若點 Q 的運動速度與點 P 的運動速度不相等,當點 Q 的運動速度為多少時,能夠使△BPD 與△CQP 全等?
(2)若點 Q 以②中的運動速度從點 C 出發(fā),點 P 以原來的運動速度從點 B 同時出發(fā),都逆時針沿△ABC 三邊運動,則經過 后,點 P 與點 Q 第一次在△ABC 的 邊上相遇?(在橫線上直接寫出答案,不必書寫解題過程)
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】數(shù)學課上,張老師出示了問題:如圖1,AC,BD是四邊形ABCD的對角線,若∠ACB=∠ACD=∠ABD=∠ADB=60°,則線段BC,CD,AC三者之間有何等量關系?
經過思考,小明展示了一種正確的思路:如圖2,延長CB到E,使BE=CD,連接AE,證得△ABE≌△ADC,從而容易證明△ACE是等邊三角形,故AC=CE,所以AC=BC+CD.
小亮展示了另一種正確的思路:如圖3,將△ABC繞著點A逆時針旋轉60°,使AB與AD重合,從而容易證明△ACF是等邊三角形,故AC=CF,所以AC=BC+CD.
在此基礎上,同學們作了進一步的研究:
(1)小穎提出:如圖4,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=45°”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關系?針對小穎提出的問題,請你寫出結論,并給出證明.
(2)小華提出:如圖5,如果把“∠ACB=∠ACD=∠ABD=∠ADB=60°”改為“∠ACB=∠ACD=∠ABD=∠ADB=α”,其它條件不變,那么線段BC,CD,AC三者之間有何等量關系?針對小華提出的問題,請你寫出結論,不用證明.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知, , ,試說明:BE∥CF.
完善下面的解答過程,并填寫理由或數(shù)學式:
解:∵ (已知)
∴AE∥ ( 。
∴( 。
∵(已知)
∴ ( 。
∴DC∥AB( 。
∴( 。
即
∵(已知)
∴( )
即
∴BE∥CF( 。 .
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知:如圖,∠A+∠D=180°,∠1=3∠2,∠2=24°,點P是BC上的一點.
(1)請寫出圖中∠1的一對同位角,一對內錯角,一對同旁內角;
(2)求∠EFC與∠E的度數(shù);
(3)若∠BFP=46°,請判斷CE與PF是否平行?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,在平面直角坐標系中,直線AB與x軸交于點B、與y軸交于點A,與反比例函數(shù)y= 的圖象在第二象限交于C,CE⊥x軸,垂足為點E,tan∠ABO= ,OB=4,OE=2.
(1)求反比例函數(shù)的解析式;
(2)若點D是反比例函數(shù)圖象在第四象限內的點,過點D作DF⊥y軸,垂足為點F,連接OD、BF.如果S△BAF=4S△DFO , 求點D的坐標.
(3)若動點D在反比例函數(shù)圖象的第四象限上運動,當線段DC與線段DB之差達到最大時,求點D的坐標.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,已知△ABC中,∠B=90°,AB=8cm,BC=6cm,P、Q分別為AB、BC邊上的動點,點P從點A開始沿AB方向運動,且速度為每秒1cm,點Q從點B開始B→C方向運動,且速度為每秒2cm,它們同時出發(fā);設出發(fā)的時間為t秒.
(1)出發(fā)2秒后,求PQ的長;
(2)從出發(fā)幾秒鐘后,△PQB能形成等腰三角形?
(3)在運動過程中,直線PQ能否把原三角形周長分成相等的兩部分?若能夠,請求出運動時間;若不能夠,請說明理由.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com