【題目】如圖,在平面直角坐標(biāo)系中,拋物線y=ax2+bx﹣3(a≠0)與x軸交于點(diǎn)A(﹣2,0),B(4,0)兩點(diǎn),與y軸交于點(diǎn)C.
(1)求拋物線的解析式;
(2)點(diǎn)P從A點(diǎn)出發(fā),在線段AB上以每秒3個(gè)單位長(zhǎng)度的速度向B點(diǎn)運(yùn)動(dòng),同時(shí)點(diǎn)Q從B點(diǎn)出發(fā),在線段BC上以每秒1個(gè)單位長(zhǎng)度的速度向C點(diǎn)運(yùn)動(dòng),其中一個(gè)點(diǎn)到達(dá)終點(diǎn)時(shí),另一個(gè)點(diǎn)也停止運(yùn)動(dòng),當(dāng)PBQ存在時(shí),求運(yùn)動(dòng)多少秒時(shí),PBQ的面積最大?最大面積是多少?
(3)在運(yùn)動(dòng)過(guò)程中,是否存在某一時(shí)刻t,使以P,B,Q為頂點(diǎn)的三角形為直角三角形?若存在,求出t值;若不存在,請(qǐng)說(shuō)明理由.
【答案】(1);(2)運(yùn)動(dòng)1秒使PBQ的面積最大,最大面積是;(3)存在,或
【解析】
(1)把點(diǎn)A、B的坐標(biāo)分別代入拋物線解析式,列出關(guān)于系數(shù)a、b的解析式,通過(guò)解方程組求得它們的值;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒.利用三角形的面積公式列出S△PBQ與t的函數(shù)關(guān)系式.利用二次函數(shù)的圖象性質(zhì)進(jìn)行解答;
(3)根據(jù)余弦函數(shù),可得關(guān)于t的方程,根據(jù)解方程,可得答案.
解:(1)把點(diǎn)A(﹣2,0)、B(4,0)分別代入y=ax2+bx﹣3(a≠0),得
,
解得,
所以該拋物線的解析式為:;
(2)設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AP=3t,BQ=t.
∴PB=6﹣3t.
由題意得,點(diǎn)C的坐標(biāo)為(0,﹣3).
在RtBOC中,.
如圖1,過(guò)點(diǎn)Q作QH⊥AB于點(diǎn)H.
∴QH∥CO,
∴BHQ∽BOC,
∴,即,
∴.
∴.
當(dāng)PBQ存在時(shí),0<t<2
∴當(dāng)t=1時(shí),.
答:運(yùn)動(dòng)1秒使PBQ的面積最大,最大面積是;
(3)如圖2,
在RtOBC中,.
設(shè)運(yùn)動(dòng)時(shí)間為t秒,則AP=3t,BQ=t.
∴PB=6﹣3t.
當(dāng)∠PQB=90°時(shí),,
即,
化簡(jiǎn),得17t=24,
解得,
當(dāng)∠BPQ=90°時(shí),
,
化簡(jiǎn),得19t=30,
解得,
綜上所述:或時(shí),以P,B,Q為頂點(diǎn)的三角形為直角三角形.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,AB是⊙O的直徑,弦CD⊥AB于點(diǎn)E,點(diǎn)F是⊙O上一點(diǎn),且=,連接FB,FD,FD交AB于點(diǎn)N.
(1)若AE=1,CD=6,求⊙O的半徑;
(2)求證:△BNF為等腰三角形;
(3)連接FC并延長(zhǎng),交BA的延長(zhǎng)線于點(diǎn)P,過(guò)點(diǎn)D作⊙O的切線,交BA的延長(zhǎng)線于點(diǎn)M.求證:ONOP=OEOM.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在正方形中,是邊上的動(dòng)點(diǎn)(與點(diǎn)、不重合),且,于點(diǎn),與的延長(zhǎng)線交于點(diǎn),連接、.
(1)求證:①;②;
(2)若,在點(diǎn)運(yùn)動(dòng)過(guò)程中,探究:
①線段的長(zhǎng)度是否改變?若不變,求出這個(gè)定值;若改變,請(qǐng)說(shuō)明理由;
②當(dāng)為何值時(shí),為等腰直角三角形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線L:y=ax2+bx+c經(jīng)過(guò)點(diǎn)A(-3,0)、B(0,4)和F(4,0).
(1)求拋物線L的解析式;
(2)在圖①拋物線L上,求作點(diǎn)C(保留作圖痕跡,不寫(xiě)作法),使∠BAC=∠FAC,并求出點(diǎn)C的坐標(biāo);
(3)在圖①中,若點(diǎn)D為拋物線上一動(dòng)點(diǎn),過(guò)點(diǎn)D作DH⊥x軸于點(diǎn)H,交直線AC于點(diǎn)G,過(guò)點(diǎn)C作CK⊥x軸于點(diǎn)K,連接DC,當(dāng)以點(diǎn)G,C,D為頂點(diǎn)的三角形與△ACK相似時(shí),求點(diǎn)D的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y1=﹣x+2的圖象與反比例函數(shù)y2=的圖象相交于A,B兩點(diǎn),與x軸相交于點(diǎn)C.已知tan∠BOC=,點(diǎn)B的坐標(biāo)為(m,n).
(1)求反比例函數(shù)的解析式;
(2)請(qǐng)直接寫(xiě)出當(dāng)x<m時(shí),y2的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】小李在景區(qū)銷售一種旅游紀(jì)念品,已知每件進(jìn)價(jià)為元,當(dāng)銷售單價(jià)定為元時(shí),每天可以銷售件.市場(chǎng)調(diào)查反映:銷售單價(jià)每提高元,日銷量將會(huì)減少件,物價(jià)部門(mén)規(guī)定:銷售單價(jià)不能超過(guò)元,設(shè)銷售單價(jià)為(元).
(1)要使日銷售利潤(rùn)為元,銷售單價(jià)應(yīng)定為多少元;
(2)求日銷售利潤(rùn)(元)與銷售單價(jià)(元)的函數(shù)關(guān)系式,當(dāng)為何值時(shí),日銷售利潤(rùn)最大,并求出最大利潤(rùn).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,正方形紙片ABCD的邊長(zhǎng)為12,E是邊CD的中點(diǎn),連接AE,折疊該紙片,使點(diǎn)A落在AE上的G點(diǎn),并使折痕經(jīng)過(guò)點(diǎn)B,得到折痕BF,點(diǎn)F在AD上,若DE=5,則GE的長(zhǎng)為__________.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,△ABC和△ABD都是⊙O的內(nèi)接三角形,圓心O在邊AB上,邊AD分別與BC,OC交于E,F兩點(diǎn),點(diǎn)C為的中點(diǎn).
(1)求證:OF∥BD;
(2)若,且⊙O的半徑R=6cm.①求證:點(diǎn)F為線段OC的中點(diǎn); ②求圖中陰影部分(弓形)的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某地?cái)偵系囊环N玩具,已知其進(jìn)價(jià)為元個(gè),試銷階段發(fā)現(xiàn)將售價(jià)定為元/個(gè)時(shí),每天可銷售個(gè),后來(lái)為了擴(kuò)大銷售量,適當(dāng)降低了售價(jià),銷售量(個(gè))與降價(jià)(元)的關(guān)系如圖所示.
求銷量與降價(jià)之間的關(guān)系式;
該玩具每個(gè)降價(jià)多少元,可以恰好獲得元的利潤(rùn)?
若要使得平均每天銷售這種玩具的利潤(rùn)最大,則每個(gè)玩具應(yīng)該降價(jià)多少元?最大的利潤(rùn)為多少元?
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com