【題目】(1)如圖1,a∥b,則∠1+∠2=
(2)如圖2,AB∥CD,則∠1+∠2+∠3= ,并說(shuō)明理由
(3)如圖3,a∥b,則∠1+∠2+∠3+∠4=
(4)如圖4,a∥b,根據(jù)以上結(jié)論,試探究∠1+∠2+∠3+∠4+…+∠n= (直接寫(xiě)出你的結(jié)論,無(wú)需說(shuō)明理由)
【答案】故答案為:180°;360°;540°;(n﹣1)180°
【解析】
(1)根據(jù)兩直線平行,同旁?xún)?nèi)角互補(bǔ)得出答案;(2)過(guò)點(diǎn)E作EF∥AB,根據(jù)平行線的性質(zhì)得出答案;(3)過(guò)∠2、∠3的頂點(diǎn)作a的平行線,然后根據(jù)平行線的性質(zhì)得出答案;(4)過(guò)∠2、∠3…的頂點(diǎn)作a的平行線,然后根據(jù)平行線的性質(zhì)得出答案.
(1)∵a∥b,
∴∠1+∠2=180°;
(2)過(guò)點(diǎn)E作EF∥AB,
∵AB∥CD,
∴AB∥CD∥EF,
∴∠1+∠AEF=180°,∠CEF+∠2=180°,
∴∠1+∠AEF+∠CEF+∠2=180°+180°,
即∠1+∠2+∠3=360°;
(3)如圖,過(guò)∠2、∠3的頂點(diǎn)作a的平行線,
則∠1+∠2+∠3+∠4=180°×3=540°;
(4)如圖,過(guò)∠2、∠3…的頂點(diǎn)作a的平行線,
則∠1+∠2+∠3+∠4+…+∠n=(n﹣1)180°.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖1,二次函數(shù)y= x2﹣2x+1的圖象與一次函數(shù)y=kx+b(k≠0)的圖象交于A,B兩點(diǎn),點(diǎn)A的坐標(biāo)為(0,1),點(diǎn)B在第一象限內(nèi),點(diǎn)C是二次函數(shù)圖象的頂點(diǎn),點(diǎn)M是一次函數(shù)y=kx+b(k≠0)的圖象與x軸的交點(diǎn),過(guò)點(diǎn)B作軸的垂線,垂足為N,且S△AMO:S四邊形AONB=1:48.
(1)求直線AB和直線BC的解析式;
(2)點(diǎn)P是線段AB上一點(diǎn),點(diǎn)D是線段BC上一點(diǎn),PD∥x軸,射線PD與拋物線交于點(diǎn)G,過(guò)點(diǎn)P作PE⊥x軸于點(diǎn)E,PF⊥BC于點(diǎn)F.當(dāng)PF與PE的乘積最大時(shí),在線段AB上找一點(diǎn)H(不與點(diǎn)A,點(diǎn)B重合),使GH+ BH的值最小,求點(diǎn)H的坐標(biāo)和GH+ BH的最小值;
(3)如圖2,直線AB上有一點(diǎn)K(3,4),將二次函數(shù)y= x2﹣2x+1沿直線BC平移,平移的距離是t(t≥0),平移后拋物線上點(diǎn)A,點(diǎn)C的對(duì)應(yīng)點(diǎn)分別為點(diǎn)A′,點(diǎn)C′;當(dāng)△A′C′K是直角三角形時(shí),求t的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】為創(chuàng)建“美麗鄉(xiāng)村”,某村計(jì)劃購(gòu)買(mǎi)甲、乙兩種樹(shù)苗共400棵,對(duì)本村道路進(jìn)行綠化改造,已知甲種樹(shù)苗每棵200元,乙種樹(shù)苗每棵300元.
若購(gòu)買(mǎi)兩種樹(shù)苗的總金額為90000元,求需購(gòu)買(mǎi)甲、乙兩種樹(shù)苗各多少棵?
若購(gòu)買(mǎi)甲種樹(shù)苗的金額不少于購(gòu)買(mǎi)乙種樹(shù)苗的金額,則至少應(yīng)購(gòu)買(mǎi)甲種樹(shù)苗多少棵?
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD中,BD⊥AD,∠A=45°,E、F分別是AB,CD上的點(diǎn),且BE=DF,連接EF交BD于O.
(1)求證:BO=DO;
(2)若EF⊥AB,延長(zhǎng)EF交AD的延長(zhǎng)線于G,當(dāng)FG=1時(shí),求AD的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在平行四邊形ABCD中,AB>BC,按以下步驟作圖:以A為圓心,小于AD的長(zhǎng)為半徑畫(huà)弧,分別交AB、CD于E、F;再分別以E、F為圓心,大于EF的長(zhǎng)半徑畫(huà)弧,兩弧交于點(diǎn)G;作射線AG交CD于點(diǎn)H.則下列結(jié)論:①AG平分∠DAB,②CH=DH,③△ADH是等腰三角形,④S△ADH=S四邊形ABCH.
其中正確的有( 。
A. ①②③ B. ①③④ C. ②④ D. ①③
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,一次函數(shù)y=kx+b與反比例函數(shù)y= (x>0)的圖象交于A(m,6),B(3,n)兩點(diǎn),與x軸交于點(diǎn)C,與y軸交于點(diǎn)D,下列結(jié)論:①一次函數(shù)解析式為y=﹣2x+8;②AD=BC;③kx+b﹣ <0的解集為0<x<1或x>3;④△AOB的面積是8,其中正確結(jié)論的個(gè)數(shù)是( )
A.4個(gè)
B.3個(gè)
C.2個(gè)
D.1個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過(guò)點(diǎn)B的直線折疊,點(diǎn)O恰好落在 上的點(diǎn)D處,折痕交OA于點(diǎn)C,則陰影部分的面積是 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在正方形ABCD中,過(guò)點(diǎn)A引射線AH,交邊CD于點(diǎn)H(點(diǎn)H與點(diǎn)D不重合).通過(guò)翻折,使點(diǎn)B落在射線AH上的點(diǎn)G處,折痕AE交BC于E,延長(zhǎng)EG交CD于F.
(感知)(1)如圖①,當(dāng)點(diǎn)H與點(diǎn)C重合時(shí),猜想FG與FD的數(shù)量關(guān)系,并說(shuō)明理由.
(探究)(2)如圖②,當(dāng)點(diǎn)H為邊CD上任意一點(diǎn)時(shí),(1)中結(jié)論是否仍然成立?請(qǐng)說(shuō)明理由.
(應(yīng)用)(3)在圖②中,當(dāng)DF=3,CE=5時(shí),直接利用探究的結(jié)論,求AB的長(zhǎng).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,⊙ 是△ 的外接圓, 為直徑,弦 , 交 的延長(zhǎng)線于點(diǎn) ,求證:
(Ⅰ) ;
(Ⅱ) 是⊙ 的切線.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com