已知一次函數(shù)的圖象經(jīng)過A(-2,-3),B(1,3)兩點.
(1)求這個一次函數(shù)的關(guān)系式.
(2)求這條直線與兩坐標軸圍成的三角形的面積.
考點:待定系數(shù)法求一次函數(shù)解析式,一次函數(shù)圖象上點的坐標特征
專題:
分析:(1)設(shè)一次函數(shù)解析式為y=kx+b,將A與B坐標代入求出k與b的值,即可確定出一次函數(shù)解析式;
(2)根據(jù)函數(shù)解析式計算出當x=0時y的值,當y=0時,x的值,進而得到與兩坐標軸的交點坐標,然后求三角形的面積即可.
解答:解:(1)設(shè)一次函數(shù)解析式為y=kx+b,
將A(-2,-3),B(1,3)代入得:
-2k+b=-3
k+b=3
,
解得:k=2,b=1,
則一次函數(shù)解析式為y=2x+1.
(2)當x=0時,y=1,
當y=0時,2x+1=0,
解得x=-
1
2
,
∴與坐標軸的交點坐標為(0,1)(-
1
2
,0),
此函數(shù)與坐標軸圍成的三角形面積:
1
2
×1×
1
2
=
1
4
點評:此題主要考查了待定系數(shù)法求一次函數(shù)解析式,以及一次函數(shù)與兩坐標軸的交點坐標,關(guān)鍵是正確求出解析式.
練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

已知式子(2-x)0-
x-1
4-x
,則x的取值范圍
 

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知二次函數(shù)y=kx2-2x+1與一次函數(shù)y=k(x-1)-
k
4
的圖象對于任意的非零實數(shù)k都有公共點,則k的取值范圍是( 。
A、-1≤k≤1且k≠0
B、-1≤k≤1
C、k≤-1或k≥1
D、任意實數(shù)

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,為了綠化小區(qū),某物業(yè)公司要在形如五邊形ABCDE的草坪上建一個矩形花壇PKDH.已知:PH∥AE,PK∥BC,DE=100米,EA=60米,BC=70米,CD=80米.以BC所在直線為x軸,AE所在直線為y軸,建立平面直角坐標系,坐標原點為O.
(Ⅰ)求直線AB的解析式.
(Ⅱ)若設(shè)點P的橫坐標為x,矩形PKDH的面積為S.
(1)用x表示S;
(2)當x為何值時,S取最大值,并求出這個最大值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,直線y=x與雙曲線y=
k
x
(x>0)相交于點A,點P在雙曲線上,過P做PB∥y軸,交直線y=x于點B,點Q在x軸的正半軸上.
(1)如果點A是線段OB中點,∠PAQ=45°
①求證:△OAQ∽△BPA;
②連接PQ,如果點A到線段PQ的距離為2,求k的值.
(2)如果點P在雙曲線上移動(不與A重合),且保持△OAQ∽△BPA,那么∠PAQ是45°嗎?若是,請說明理由;若不是,能確定其大小嗎?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

求不等式組
3x+2>2(x-1)
x+8>4x-1
的解集.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

第20屆世界杯足球賽正在如火如荼的進行,爸爸想通過一個游戲決定小明能否看今晚的比賽:在一個不透明的盒子中放入三張卡片,每張卡片上寫著一個實數(shù),分別為3,
2
,2
2
(每張卡片除了上面的實數(shù)不同以外其余均相同),爸爸讓小明從中任意取一張卡片,如果抽到的卡片上的數(shù)是有理數(shù),就讓小明看比賽,否則就不能看.
(1)請你直接寫出按照爸爸的規(guī)則小明能看比賽的概率;
(2)小明想了想,和爸爸重新約定游戲規(guī)則:自己從盒子中隨機抽取兩次,每次抽取一張卡片,第一次抽取后記下卡片上的數(shù),再將卡片放回盒中抽取第二次,如果抽取的兩數(shù)之積是有理數(shù),自己就看比賽,否則就不看.請你用列表法或樹狀圖法求出按照此規(guī)則小明看比賽的概率.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,在正方形ABCD中,邊長AB=3,點E(與B,C不重合)是BC邊上任意一點,把EA繞點E順時針方向旋轉(zhuǎn)90°到EF,連接CF.
(1)求證:CF是正方形ABCD的外角平分線;
(2)當∠BAE=30°時,求CF的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

某項球類比賽,每場比賽必須分出勝負,其中勝1場得2分,負1場得1分.某隊在全部16場比賽中得到25分,求這個隊勝、負場數(shù)分別是多少?

查看答案和解析>>

同步練習冊答案