【題目】如圖,在等腰△ABC中,AB=AC=4cm,∠B=30°,點(diǎn)P從點(diǎn)B出發(fā),以cm/s的速度沿BC方向運(yùn)動(dòng)到點(diǎn)C停止,同時(shí)點(diǎn)Q從點(diǎn)B出發(fā)以2cm/s的速度沿B→A→C運(yùn)動(dòng)到點(diǎn)C停止.若△BPQ的面積為y運(yùn)動(dòng)時(shí)間為x(s),則下列圖象中能大致反映y與x之間關(guān)系的是( 。
A.B.C.D.
【答案】D
【解析】
作AH⊥BC于H,根據(jù)等腰三角形的性質(zhì)得BH=CH,利用∠B=30°可計(jì)算出AH=AB=2,BH=AH=2,BC=2BH=4,利用速度公式可得點(diǎn)P從B點(diǎn)運(yùn)動(dòng)到C需4s,Q點(diǎn)運(yùn)動(dòng)到C需8s,然后分類討論:當(dāng)0≤x≤2時(shí),作QD⊥BC于D,如圖1;當(dāng)2<x≤4時(shí),作QD⊥BC于D,如圖2;于是可得0≤x≤2時(shí),函數(shù)圖象為拋物線的一部分,當(dāng)2<x≤4時(shí),函數(shù)圖象為拋物線的一部分,即可得到答案.
解:如圖1,作AH⊥BC于H,
∵AB=AC=4cm,
∴BH=CH
∵∠B=30°,
∴AH=AB=2,BH=AH=2,
∴BC=2BH=4,
∵點(diǎn)P運(yùn)動(dòng)的速度為cm/s,Q點(diǎn)運(yùn)動(dòng)的速度為2cm/s,
∴點(diǎn)P從B點(diǎn)運(yùn)動(dòng)到C需2s,Q點(diǎn)運(yùn)動(dòng)到C需4s,
當(dāng)0≤x≤2時(shí),作QD⊥BC于D,如圖1,BQ=2x,BP=,
在Rt△BPQ中,DQ=BQ=x,
∴y=xx=x2.
當(dāng)2<x≤4時(shí),作QD⊥BC于D,如圖2,CQ=4-2x,BP=x,
在Rt△BDQ中,DQ==(4-2x),
∴y=(4-2x)=,
綜上所述,y=
故選:D.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】某企業(yè)設(shè)計(jì)了一款工藝品,每件的成本是50元,為了合理定價(jià),投放市場(chǎng)進(jìn)行試銷.據(jù)市場(chǎng)調(diào)查,銷售單價(jià)是100元時(shí),每天的銷售量是50件,而銷售單價(jià)每降低1元,每天就可多售出5件,但要求銷售單價(jià)不得低于成本.
求出每天的銷售利潤(rùn)元與銷售單價(jià)元之間的函數(shù)關(guān)系式;
求出銷售單價(jià)為多少元時(shí),每天的銷售利潤(rùn)最大?最大利潤(rùn)是多少?
如果該企業(yè)要使每天的銷售利潤(rùn)不低于4000元,且每天的總成本不超過(guò)7000元,那么銷售單價(jià)應(yīng)控制在什么范圍內(nèi)?每天的總成本每件的成本每天的銷售量
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c如圖,則代數(shù)式①ac;②a+b+c;③4a﹣2b+c;④2a+b其值大于0的個(gè)數(shù)為( )
A.1個(gè)B.2個(gè)C.3個(gè)D.4個(gè)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知矩形ABCD,AB=6,BC=10,E,F分別是AB,BC的中點(diǎn),AF與DE相交于I,與BD相交于H,則四邊形BEIH的面積為( )
A.6B.7C.8D.9
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,在△ABC中,CD是邊AB上的中線,∠B是銳角,sinB=,tanA=,AC=,
(1)求∠B 的度數(shù)和 AB 的長(zhǎng).
(2)求 tan∠CDB 的值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】改革開放40年來(lái),中國(guó)已經(jīng)成為領(lǐng)先世界的基建強(qiáng)國(guó),如圖①是建筑工地常見(jiàn)的塔吊,其主體部分的平面示意圖如圖②,點(diǎn)F在線段HG上運(yùn)動(dòng),BC∥HG,AE⊥BC,垂足為點(diǎn)E,AE的延長(zhǎng)線交HG于點(diǎn)G,經(jīng)測(cè)量,∠ABD=11°,∠ADE=26°,∠ACE=31°,BC=20m,EG=0.6m.
(1)求線段AG的長(zhǎng)度;
(2)連接AF,當(dāng)線段AF⊥AC時(shí),求點(diǎn)F和點(diǎn)G之間的距離.
(所有結(jié)果精確到0.1m.參考數(shù)據(jù):tan11°≈0.19,tan26°≈0.49,tan31°≈0.60)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知拋物線y=x2+bx+c經(jīng)過(guò)A(﹣1,0)、B(3,0)兩點(diǎn).
(1)求拋物線的解析式和頂點(diǎn)坐標(biāo);
(2)若p為x軸上方拋物線上一點(diǎn),且三角形PAB面積為20,求P點(diǎn)坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,某中學(xué)數(shù)學(xué)活動(dòng)小組在學(xué)習(xí)了“利用三角函數(shù)測(cè)高”后,選定測(cè)量小河對(duì)岸一幢建筑物BC的高度,他們先在斜坡上的D處,測(cè)得建筑物頂端B的仰角為30°.且D離地面的高度DE=5m.坡底EA=30m,然后在A處測(cè)得建筑物頂端B的仰角是60°,點(diǎn)E,A,C在同一水平線上,求建筑物BC的高.(結(jié)果用含有根號(hào)的式子表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】已知關(guān)于x的方程x2-(m+2)x+(2m-1)=0。
(1)求證:方程恒有兩個(gè)不相等的實(shí)數(shù)根;
(2)若此方程的一個(gè)根是1,請(qǐng)求出方程的另一個(gè)根,并求以此兩根為邊長(zhǎng)的直角三角形的周長(zhǎng)。
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com