【題目】如圖已知∠1=∠2,∠BAD=∠BCD,則下列結(jié)論:①AB∥CD,②AD∥BC,③∠B=∠D,④∠D=∠ACB,正確的有( 。
A. 1個(gè) B. 2個(gè) C. 3個(gè) D. 4個(gè)
【答案】C
【解析】
①根據(jù)內(nèi)錯(cuò)角相等,判定兩直線平行;②根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)與同旁內(nèi)角互補(bǔ),兩直線平行進(jìn)行判定;③根據(jù)兩直線平行,同旁內(nèi)角互補(bǔ)與同角的補(bǔ)角相等判定;④∠D與∠ACB不能構(gòu)成三線八角,無法判斷.
∵∠1=∠2,
∴AB∥CD(內(nèi)錯(cuò)角相等,兩直線平行)
所以①正確;
∵AB∥CD(已證)
∴∠BAD+∠ADC=180°(兩直線平行,同旁內(nèi)角互補(bǔ))
又∵∠BAD=∠BCD,
∴∠BCD+∠ADC=180°,
∴AD∥BC(同旁內(nèi)角互補(bǔ),兩直線平行)
故②也正確;
∵AB∥CD,AD∥BC(已證)
∴∠B+∠BCD=180°,
∠D+∠BCD=180°,
∴∠B=∠D(同角的補(bǔ)角相等)
所以③也正確;
正確的有3個(gè).
故選:C.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,△ABC是⊙O的內(nèi)接三角形,AB是⊙O的直徑,OD⊥AB于點(diǎn)O,分別交AC、CF于點(diǎn)E、D,且DE=DC.
(1)求證:CF是⊙O的切線;
(2)若⊙O的半徑為5,BC= ,求DE的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,平面直角坐標(biāo)系中,直線AB交y軸于點(diǎn)A(0,1),交x軸于點(diǎn)B(3,0).直線x=1交AB于點(diǎn)D,交x軸于點(diǎn)E,P是直線x=1上一動(dòng)點(diǎn),在點(diǎn)D的上方,設(shè)P(1,n).
(1)求直線AB的解析式;
(2)求△ABP的面積(用含n的代數(shù)式表示);
(3)當(dāng)S△ABP=2時(shí),以PB為邊在第一象限作等腰直角三角形BPC,求出點(diǎn)C的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】列一元一次方程解應(yīng)用問題:
一個(gè)蓄水池裝有甲、乙兩個(gè)進(jìn)水管和丙一個(gè)出水管,單獨(dú)開放甲管3小時(shí)可注滿一池水,單獨(dú)開放乙管6小時(shí)可注滿一池水,單獨(dú)開放丙管4小時(shí)可放盡一池水.
(1)若同時(shí)開放甲、乙、丙三個(gè)水管,幾小時(shí)可注滿水池?
(2)若甲管先開放1小時(shí),而后同時(shí)開放乙、丙兩個(gè)水管,則共需幾小時(shí)可注滿水池?
(3)若甲管先開放1小時(shí)后關(guān)閉,而后同時(shí)開放乙、丙兩個(gè)水管,能注滿水池嗎?并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,有一張長40cm,寬30cm的長方形硬紙片,截去四個(gè)小正方形之后,折成如圖2所示的無蓋紙盒,設(shè)無蓋紙盒高為xcm.
用關(guān)于x的代數(shù)式分別表示無蓋紙盒的長和寬.
若紙盒的底面積為,求紙盒的高.
現(xiàn)根據(jù)中的紙盒,制作了一個(gè)與下底面相同大小的矩形盒蓋,并在盒蓋上設(shè)計(jì)了六個(gè)總面積為的矩形圖案如圖3所示,每個(gè)圖案的高為ycm,A圖案的寬為xcm,之后圖案的寬度依次遞增1cm,各圖案的間距、A圖案與左邊沿的間距、F圖案與右邊沿的間距均相等,且不小于,求x的取值范圍和y的最小值.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在菱形ABCD中,AB=1,∠DAB=60°,把菱形ABCD繞點(diǎn)A順時(shí)針旋轉(zhuǎn)30°得到菱形AB′C′D′,其中點(diǎn)C的運(yùn)動(dòng)路徑為 ,則圖中陰影部分的面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知一次函數(shù)y=kx+b的圖象經(jīng)過點(diǎn)(-1,-5),且與正比例函數(shù)y=x的圖象相交于點(diǎn)(2,a),求:
(1)a的值.
(2)k,b的值.
(3)這兩個(gè)函數(shù)圖象與x軸所圍成的三角形的面積。
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,將兩個(gè)完全相同的三角形紙片ABC和DEC重合放置,其中∠C=90°,∠B=∠E=30°.
(1)操作發(fā)現(xiàn) 如圖2,固定△ABC,使△DEC繞點(diǎn)C旋轉(zhuǎn),當(dāng)點(diǎn)D恰好落在AB邊上時(shí),填空:
② 線段DE與AC的位置關(guān)系是;
②設(shè)△BDC的面積為S1 , △AEC的面積為S2 , 則S1與S2的數(shù)量關(guān)系是 .
(2)猜想論證 當(dāng)△DEC繞點(diǎn)C旋轉(zhuǎn)到如圖3所示的位置時(shí),小明猜想(1)中S1與S2的數(shù)量關(guān)系仍然成立,并嘗試分別作出了△BDC和△AEC中BC、CE邊上的高,請(qǐng)你證明小明的猜想.
(3)拓展探究 已知∠ABC=60°,點(diǎn)D是角平分線上一點(diǎn),BD=CD=4,DE∥AB交BC于點(diǎn)E(如圖4).若在射線BA上存在點(diǎn)F,使S△DCF=S△BDE , 請(qǐng)直接寫出相應(yīng)的BF的長.
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com