分析 由三角形內(nèi)心的定義可知∠1=∠4,∠2=∠3,由圓周角定理可知∠4=∠5,于是可求得∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD,故此ID=BD.
解答 解:ID=BD.
理由:如圖所示:連接BI.
由三角形的外角的性質(zhì)可知:∠1+∠2=∠BIA.
∵點(diǎn)I是△ABC的內(nèi)心,
∴∠1=∠4,∠2=∠3.
又∵∠4=∠5,
∴∠1+∠2=∠3+∠4=∠3+∠5,即∠BIA=∠IBD.
∴ID=BD.
點(diǎn)評(píng) 本題主要考查的是三角形的內(nèi)心、圓周角定理、三角形的外角的性質(zhì),證得由三角形的內(nèi)心的定義得到∠1=∠4,∠2=∠3是解題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | 2.4 | B. | 2 | C. | 2.5 | D. | 2$\sqrt{2}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | ①、② | B. | ①、③ | C. | ①、②、③ | D. | ①、②、④ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:選擇題
A. | $\frac{AE}{AC}=\frac{AD}{AB}$ | B. | $\frac{AE}{EC}=\frac{BF}{FC}$ | C. | $\frac{AD}{BD}=\frac{BF}{FC}$ | D. | $\frac{BD}{AD}=\frac{BF}{FC}$ |
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:解答題
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:填空題
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com