【題目】如圖,一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點(diǎn)A(4,m)和B(﹣8,﹣2),與y軸交于點(diǎn)C.
(1)k1= , k2=;
(2)根據(jù)函數(shù)圖象可知,當(dāng)y1>y2時(shí),x的取值范圍是;
(3)過(guò)點(diǎn)A作AD⊥x軸于點(diǎn)D,點(diǎn)P是反比例函數(shù)在第一象限的圖象上一點(diǎn).設(shè)直線(xiàn)OP與線(xiàn)段AD交于點(diǎn)E,當(dāng)S四邊形ODAC:S△ODE=3:1時(shí),求點(diǎn)P的坐標(biāo).
【答案】
(1);16
(2)﹣8<x<0或x>4
(3)
解:由(1)知, .
∴m=4,點(diǎn)C的坐標(biāo)是(0,2)點(diǎn)A的坐標(biāo)是(4,4).
∴CO=2,AD=OD=4.
∴ .
∵S梯形ODAC:S△ODE=3:1,∴S△ODE= S梯形ODAC= ×12=4,
即 ODDE=4,
∴DE=2.
∴點(diǎn)E的坐標(biāo)為(4,2).
又點(diǎn)E在直線(xiàn)OP上,
∴直線(xiàn)OP的解析式是 .
∴直線(xiàn)OP與 的圖象在第一象限內(nèi)的交點(diǎn)P的坐標(biāo)為( ).
故答案為: ,16,﹣8<x<0或x>4
【解析】解:(1)∵一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點(diǎn)A(4,m)和B(﹣8,﹣2),
∴K2=(﹣8)×(﹣2)=16,
﹣2=﹣8k1+2
∴k1=
2)∵一次函數(shù)y1=k1x+2與反比例函數(shù) 的圖象交于點(diǎn)A(4,4)和B(﹣8,﹣2),
∴當(dāng)y1>y2時(shí),x的取值范圍是
﹣8<x<0或x>4;
【考點(diǎn)精析】認(rèn)真審題,首先需要了解一次函數(shù)的圖象和性質(zhì)(一次函數(shù)是直線(xiàn),圖像經(jīng)過(guò)仨象限;正比例函數(shù)更簡(jiǎn)單,經(jīng)過(guò)原點(diǎn)一直線(xiàn);兩個(gè)系數(shù)k與b,作用之大莫小看,k是斜率定夾角,b與Y軸來(lái)相見(jiàn),k為正來(lái)右上斜,x增減y增減;k為負(fù)來(lái)左下展,變化規(guī)律正相反;k的絕對(duì)值越大,線(xiàn)離橫軸就越遠(yuǎn)),還要掌握反比例函數(shù)的圖象(反比例函數(shù)的圖像屬于雙曲線(xiàn).反比例函數(shù)的圖象既是軸對(duì)稱(chēng)圖形又是中心對(duì)稱(chēng)圖形.有兩條對(duì)稱(chēng)軸:直線(xiàn)y=x和 y=-x.對(duì)稱(chēng)中心是:原點(diǎn))的相關(guān)知識(shí)才是答題的關(guān)鍵.
年級(jí) | 高中課程 | 年級(jí) | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】右圖為手的示意圖,在各個(gè)手指間標(biāo)記字母A、B、C、D.請(qǐng)你按圖中箭頭所指方向(即ABCDCBABC…的方式)從A開(kāi)始數(shù)連續(xù)的正整數(shù)1,2,3,4…,當(dāng)數(shù)到12時(shí),對(duì)應(yīng)的字母是 ;當(dāng)字母C第201次出現(xiàn)時(shí),恰好數(shù)到的數(shù)是 ;當(dāng)字母C第2n+1次出現(xiàn)時(shí)(n為正整數(shù)),恰好數(shù)到的數(shù)是 (用含n的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】類(lèi)比、轉(zhuǎn)化、從特殊到一般等思想方法,在數(shù)學(xué)學(xué)習(xí)和研究中經(jīng)常用到,如下是一個(gè)案例,請(qǐng)補(bǔ)充完整. 原題:如圖1,在平行四邊形ABCD中,點(diǎn)E是BC的中點(diǎn),點(diǎn)F是線(xiàn)段AE上一點(diǎn),BF的延長(zhǎng)線(xiàn)交射線(xiàn)CD于點(diǎn)G.若 =3,求 的值.
(1)嘗試探究 在圖1中,過(guò)點(diǎn)E作EH∥AB交BG于點(diǎn)H,則AB和EH的數(shù)量關(guān)系是 , CG和EH的數(shù)量關(guān)系是 , 的值是 .
(2)類(lèi)比延伸 如圖2,在原題的條件下,若 =m(m>0),求 的值(用含有m的代數(shù)式表示),試寫(xiě)出解答過(guò)程.
(3)拓展遷移 如圖3,梯形ABCD中,DC∥AB,點(diǎn)E是BC的延長(zhǎng)線(xiàn)上的一點(diǎn),AE和BD相交于點(diǎn)F.若 =a, =b,(a>0,b>0),則 的值是(用含a、b的代數(shù)式表示).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖是一個(gè)幾何體的三視圖,根據(jù)圖示的數(shù)據(jù)可計(jì)算出該幾何體的表面積為 .
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,已知:點(diǎn)P是內(nèi)一點(diǎn).
求證:;
若PB平分,PC平分,,求的度數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】如圖,ABCD的對(duì)角線(xiàn)AC,BD相交于O,EF經(jīng)過(guò)點(diǎn)O,分別交AD,BC于E,F,已知ABCD的面積是,則圖中陰影部分的面積是
A. 12 B. 10 C. D.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】完成下面的解題過(guò)程,并在括號(hào)內(nèi)填上依據(jù).如圖,EF∥AD,∠1=∠2,∠BAC=85°.求∠AGD的度數(shù)
解: ∵EF∥AD,
∴∠2=____( )
又∵∠1=∠2
∴∠1=∠3
∴ ∥____( )
∴∠BAC+____=180°
∵∠BAC=85°
∴∠AGD=950
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】在平面直角坐標(biāo)系xOy中,對(duì)于與坐標(biāo)軸不平行的直線(xiàn)l和點(diǎn)P,給出如下定義:過(guò)點(diǎn)P作x軸,y軸的垂線(xiàn),分別交直線(xiàn)l于點(diǎn)M,N,若PM+PN≤4,則稱(chēng)P為直線(xiàn)l的近距點(diǎn),特別地,直線(xiàn)上l所有的點(diǎn)都是直線(xiàn)l的近距點(diǎn).已知點(diǎn)A(-,0),B(0,2),C(-2,2).
(1)當(dāng)直線(xiàn)l的表達(dá)式為y=x時(shí),
①在點(diǎn)A,B,C中,直線(xiàn)l的近距點(diǎn)是 ;
②若以OA為邊的矩形OAEF上所有的點(diǎn)都是直線(xiàn)l的近距點(diǎn),求點(diǎn)E的縱坐標(biāo)n的取值范圍;
(2)當(dāng)直線(xiàn)l的表達(dá)式為y=kx時(shí),若點(diǎn)C是直線(xiàn)l的近距點(diǎn),直接寫(xiě)出k的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來(lái)源: 題型:
【題目】對(duì)于一次函數(shù)y=kx+b,當(dāng)自變量x的取值為﹣2≤x≤5時(shí),相應(yīng)的函數(shù)值的范圍為﹣6≤y≤﹣3,則該函數(shù)的解析式為 .
查看答案和解析>>
百度致信 - 練習(xí)冊(cè)列表 - 試題列表
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺(tái) | 網(wǎng)上有害信息舉報(bào)專(zhuān)區(qū) | 電信詐騙舉報(bào)專(zhuān)區(qū) | 涉歷史虛無(wú)主義有害信息舉報(bào)專(zhuān)區(qū) | 涉企侵權(quán)舉報(bào)專(zhuān)區(qū)
違法和不良信息舉報(bào)電話(huà):027-86699610 舉報(bào)郵箱:58377363@163.com