【題目】把和按如圖擺放(點與重合),點、、在同一條直線上.已知:,,,,.如圖,從圖的位置出發(fā),以的速度沿向勻速移動,在移動的同時,點從的頂點出發(fā),以的速度沿向點勻速移動;當(dāng)點移動到點時,點停止移動,也隨之停止移動.與交于點,連接,設(shè)移動時間為.
用含的代數(shù)式表示線段和的長,并寫出的取值范圍;
當(dāng)為何值時,是等腰三角形.
【答案】 的取值范圍是:;當(dāng)或或時,是等腰三角形
【解析】
(1)根據(jù)題意以及直角三角形性質(zhì),表達出CQ、AQ,再根據(jù)當(dāng)點P移動到點B時,點P停止移動,得出t的取值范圍;
(2)分三種情況進行討論:①若AP=AQ;②若AP=PQ;③若AQ=PQ,根據(jù)題意以及相似三角形對應(yīng)邊成比例,列出比例式進行計算即可得出結(jié)論.
解:∵點從的頂點出發(fā),以的速度沿向點勻速移動,
∴,
∵,,
∴,
∴,
∴,
∵中,,,
∴,
∴,
∵當(dāng)點移動到點時,點停止移動,
∴的取值范圍是:;解:分三種情況:
①若,則有,如圖,
解得:;
②若,如圖,過點作,則,
∵,
∴,
∴,
即,
解得:;
③若,如圖,過點作,則,
∵,,
∴,
∴,
即,
解得:
綜上所述,當(dāng)或或時,是等腰三角形.
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在正方形ABCD中,對角線AC、BD相交于點O,E為OC上動點(不與O、C重合),作AF⊥BE,垂足為G,分別交BC、OB于F、H,連接OG、CG.
(1)求證:AH=BE;
(2)∠AGO的度數(shù)是否為定值?說明理由;
(3)若∠OGC=90°,BG=,求△OGC的面積.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,AB=AC,∠BAC=45°,BD⊥AC,垂足為D點,AE平分∠BAC,交BD于點F交BC于點E,點G為AB的中點,連接DG,交AE于點H,下列結(jié)論錯誤的是( )
A.AH=2DFB.HE=BEC.AF=2CED.DH=DF
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,四邊形是矩形,為原點,、的坐標(biāo)分別為、,是邊上的一個動點(不與,重合),過點的反比例函數(shù)的圖象與邊交于點.
當(dāng)時,寫出點、的坐標(biāo);
求的值;
是否存在這樣的點,使得將沿對折后,點恰好落在上?若存在,求出此時點的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點O為矩形ABCD對角線交點,,,點E、F、G分別從D,C,B三點同時出發(fā),沿矩形的邊DC、CB、BA勻速運動,點E的運動速度為,點F的運動速度為,點G的運動速度為,當(dāng)點F到達點點F與點B重合時,三個點隨之停止運動在運動過程中,關(guān)于直線EF的對稱圖形是設(shè)點E、F、G運動的時間為單位:
當(dāng)______s時,四邊形為正方形;
若以點E、C、F為頂點的三角形與以點F、B、G為頂點的三角形相似,求t的值;
是否存在實數(shù)t,使得點與點O重合?若存在,直接寫出t的值;若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某次學(xué)生夏令營活動,有小學(xué)生、初中生、高中生和大學(xué)生參加,共200人,各類學(xué)生人數(shù)比例見扇形統(tǒng)計圖.
(1)參加這次夏令營活動的初中生共有多少人?
(2)活動組織者號召參加這次夏令營活動的所有學(xué)生為貧困學(xué)生捐款.結(jié)果小學(xué)生每人
捐款 5 元,初中生每人捐款 10 元,高中生每人捐款 15 元,大學(xué)生每人捐款 20 元.問平均 每人捐款是多少元?
(3)在(2)的條件下,把每個學(xué)生的捐款數(shù)額(以元為單位)——記錄下來,則在這組數(shù)據(jù)中,眾數(shù)是多少?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,一次函數(shù)的圖像與的圖像交于點,與軸和 軸分別交于點和點,且點的橫坐標(biāo)為.
(1)求的值與的長;
(2)若點為線段上一點,且,求點的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】小明和幾位同學(xué)做手的影子游戲時,發(fā)現(xiàn)對于同一物體,影子的大小與光源到物體的距離有關(guān).因此,他們認(rèn)為:可以借助物體的影子長度計算光源到物體的位置.于是,他們做了以下嘗試.
(1)如圖①,垂直于地面放置的正方形框架ABCD,邊長AB為30cm,在其正上方有一燈泡,在燈泡的照射下,正方形框架的橫向影子A′B,D′C的長度和為6cm.那么燈泡離地面的高度為 .
(2)不改變①中燈泡的高度,將兩個邊長為30cm的正方形框架按圖②擺放,請計算此時橫向影子A′B,D′C的長度和為多少?
(3)有n個邊長為a的正方形按圖③擺放,測得橫向影子A′B,D′C的長度和為b,求燈泡離地面的距離.(寫出解題過程,結(jié)果用含a,b,n的代數(shù)式表示)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在某隧道建設(shè)工程中,需沿方向開山修路,為了加快施工進度,要在小山的另一邊同時施工.為了使開挖點在直線上,現(xiàn)在上取一點,外取一點,測得,,.求開挖點到點的距離.
(精確到米)參考數(shù)據(jù):,,.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com