定義:如圖(1),若分別以△ABC的三邊AC,BC,AB為邊向三角形外側作正方形ACDE,BCFG和ABMN,則稱這三個正方形為△ABC的外展三葉正方形,其中任意兩個正方形為△ABC的外展雙葉正方形.
(1)作△ABC的外展雙葉正方形ACDE和BCFG,記△ABC,△DCF的面積分別為S1和S2
①如圖(2),當∠ACB=90°時,求證:S1=S2
②如圖(3),當∠ACB≠90°時,S1與S2是否仍然相等,請說明理由.
(2)已知△ABC中,AC=3,BC=4,作其外展三葉正方形,記△DCF,△AEN,△BGM的面積和為S,請利用圖(1)探究:當∠ACB的度數(shù)發(fā)生變化時,S的值是否發(fā)生變化?若不變,求出S的值;若變化,求出S的最大值.
考點:四邊形綜合題,全等三角形的判定與性質,直角三角形的性質
專題:綜合題
分析:(1)由正方形的性質可以得出AC=DC,BC=FC,∠ACB=∠DCF=90°,就可以得出△ABC≌△DFC而得出結論;
(2)如圖3,過點A作AP⊥BC于點P,過點D作DQ⊥FC交FC的延長線于點Q,通過證明△APC≌△DQC就有DQ=AP而得出結論;
(3)如圖 1,根據(jù)(2)可以得出S=3S△ABC,要使S最大,就要使S△ABC最大,當∠AVB=90°時S△ABC最大,就可以求出結論.
解答:(1)證明:如圖1,∵正方形ACDE和正方形BCFG,
∴AC=DC,BC=FC,∠ACD=∠BCF=90°,
∵∠ACB=90°,∴∠DCF=90°,
∴∠ACB=∠DCF=90°.
在△ABC和△DFC中,
AC=DC
∠ACB=∠DCF
BC=FC
,
∴△ABC≌△DFC(SAS).
∴S△ABC=S△DFC
∴S1=S2.          
                                         
(2)S1=S2.                                                        
理由如下:
解:如圖3,過點A作AP⊥BC于點P,過點D作DQ⊥FC交FC的延長線于點Q.
∴∠APC=∠DQC=90°.
∵四邊形ACDE,BCFG均為正方形,
∴AC=CD,BC=CF,
∵∠ACP+∠ACQ=90°,∠DCQ+∠ACQ=90°.
∴∠ACP=∠DCQ.
在△APC和△DQC中
∠APC=∠DQC
∠ACP=∠DCQ
AC=DC
,
∴△APC≌△DQC(AAS),
∴AP=DQ.
∴BC×AP=DQ×FC,
1
2
BC×AP=
1
2
DQ×FC
∵S1=
1
2
BC×AP,S2=
1
2
FC×DQ,
∴S1=S2;  
                                              
(3)由(2)得,S是△ABC面積的三倍,
要使S最大,只需三角形ABC的面積最大,
∴當△ABC是直角三角形,即∠ACB=90°時,S有最大值.       
此時,S=3S△ABC=3×
1
2
×3×4=18.
點評:本題考查了正方形的性質的運用,全等三角形的判定及性質的運用,直角三角形的性質的運用,三角形的面積公式的運用,解答時證明三角形全等是關鍵.
練習冊系列答案
相關習題

科目:初中數(shù)學 來源: 題型:

計算:
18
-
1
3
-(
4
3
+6
1
8
).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,拋物線y=ax2+2ax+4與x軸交于點A、B,與y軸交于點C,tan∠CBO=2,動直線l從與直線AC重合的位置出發(fā),繞點A順時針旋轉,與直線AB重合時終止運動,直線l與BC交于點D,P是線段AD的中點.
(1)求該拋物線的解析式;
(2)①直接寫出點P所經(jīng)過的路徑長;
    ②若點Q在直線AC上方的拋物線上,且四邊形PDCQ是平行四邊形,求點Q的坐標;
(3)點D與B、C不重合時,過點D作DE⊥AC于點E,作DF⊥AB于點F,連結EF,求EF的最小值.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知拋物線y=
1
2
x2-mx+2m-
7
2
的頂點為點C.
(1)求證:不論m為何實數(shù),該拋物線與x軸總有兩個不同的交點;
(2)若拋物線的對稱軸為直線x=-3,求m的值和C點坐標;
(3)如圖,直線y=x-1與(2)中的拋物線交于A、B兩點,并與它的對稱軸交于點D.直線x=k交直線AB于點M,交拋物線于點N.求當k為何值時,以C,D,M,N為頂點的四邊形是平行四邊形.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

如圖,動直線y=kx(k>0)與拋物線y=ax2(a是常數(shù),且a>0)相交與點O,A,以OA為邊作矩形OABC.
(1)求點A的坐標(用含k、a的式子表示);
(2)設點B的坐標為(x,y),當點C恰好落在該拋物線上時,求y與x的函數(shù)關系式(用含a的式子表示);
(3)在(2)中求出的函數(shù)是否有最大(或最。┲?若有,求出其值,以及此時k的值,并判斷此時四邊形OABC的形狀;若沒有,說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

列方程組解應用題:
隨著人民生活水平的不斷提高,外出采摘成了近郊旅游新時尚.端午節(jié)期間,小王一家去某農(nóng)場采摘櫻桃,已知A品種櫻桃采摘價格為80元/千克,B品種櫻桃采摘價格為60元/千克.若小王一家采摘A,B兩種櫻桃共8千克,共消費580元,那么他們采摘A,B兩種櫻桃各多少千克?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

計算:(-
3
2+
32
-2
4
1
2

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

在平面直角坐標系中,點A(1,2a+3)在第一象限.
(1)若點A到x軸的距離與到y(tǒng)軸的距離相等,求a的值;
(2)若點A到x軸的距離小于到y(tǒng)軸的距離,求a的取值范圍.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

已知關于x,y的方程組
x+3y=4-a
x-y=3a
,其中-3≤a≤1,給出下列命題:
x=5
y=-1
是方程組的解;
②當a=-2時,x,y的值互為相反數(shù);
③當a=1時,方程組的解也是方程x+y=4-a的解;
④若x≤1,則1≤y≤4.
其中正確命題的序號是
 
.(把所有正確命題的序號都填上)

查看答案和解析>>

同步練習冊答案