【題目】如圖,△ABC三個頂點(diǎn)的坐標(biāo)分別為A(1,1),B(4,2),C(3,4).
(1)請畫出△ABC向下平移6個單位得到的△A1B1C1,并寫出A1的坐標(biāo);
(2)請畫出△ABC關(guān)于原點(diǎn)對稱的△A2B2C2,并寫出點(diǎn)B2的坐標(biāo);
(3)分別連接B2C和C2B,判斷四邊形CBC2B2是什么特殊的四邊形(不用說明理由);
【答案】(1)畫圖見解析;(2)畫圖見解析;(3)四邊形CBC2B2是平行四邊形.
【解析】
(1)利用點(diǎn)平移的坐標(biāo)變換規(guī)律寫出A1、B1、C1的坐標(biāo),然后描點(diǎn)即可;
(2)利用關(guān)于原點(diǎn)對稱的點(diǎn)的坐標(biāo)特征寫出A2、B2、C2的坐標(biāo),然后描點(diǎn)即可;
(3)利用圖形及B2、C、C、B1的坐標(biāo)可判斷B2C平行且等于C2B,從而可判斷四邊形CBC2B2是平行四邊形.
解:(1)如圖,△A1B1C1為所作,點(diǎn)A1的坐標(biāo)為(1,﹣5);
(2)如圖,△A2B2C2為所作,點(diǎn)B2的坐標(biāo)為(﹣4,﹣2);
(3)四邊形CBC2B2是平行四邊形.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,AB為⊙O直徑,D為弧AC的中點(diǎn),DG⊥AB于G,交AC于E,AC、BD相交于F.
(1)求證:AE=DE;
(2)若AG=2,DG=4,求AF的長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系中,過原點(diǎn)O及A(8,0)、C(0,6)作矩形OABC,連接AC,一個直角三角形PDE的直角頂點(diǎn)P始終在對角線AC上運(yùn)動(不與A、C重合),且保持一邊PD始終經(jīng)過矩形頂點(diǎn)B,PE交x軸于點(diǎn)Q
(1)=______;
(2)在點(diǎn)P從點(diǎn)C運(yùn)動到點(diǎn)A的過程中,的值是否發(fā)生變化?如果變化,請求出其變化范圍,如果不變,請說明理由,并求出其值;
(3)若將△QAB沿直線BQ折疊后,點(diǎn)A與點(diǎn)P重合,則PC的長為_____.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】綜合與探究
如圖,拋物線經(jīng)過點(diǎn)A(-2,0),B(4,0)兩點(diǎn),與軸交于點(diǎn)C,點(diǎn)D是拋物線上一個動點(diǎn),設(shè)點(diǎn)D的橫坐標(biāo)為.連接AC,BC,DB,DC,
(1)求拋物線的函數(shù)表達(dá)式;
(2)△BCD的面積等于△AOC的面積的時,求的值;
(3)在(2)的條件下,若點(diǎn)M是軸上的一個動點(diǎn),點(diǎn)N是拋物線上一動點(diǎn),試判斷是否存在這樣的點(diǎn)M,使得以點(diǎn)B,D,M,N為頂點(diǎn)的四邊形是平行四邊形,若存在,請直接寫出點(diǎn)M的坐標(biāo);若不存在,請說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商店銷售一種商品,童威經(jīng)市場調(diào)查發(fā)現(xiàn):該商品的周銷售量(件)是售價(元/件)的一次函數(shù),其售價、周銷售量、周銷售利潤(元)的三組對應(yīng)值如下表:
售價(元/件) | 50 | 60 | 80 |
周銷售量(件) | 100 | 80 | 40 |
周銷售利潤(元) | 1000 | 1600 | 1600 |
注:周銷售利潤=周銷售量×(售價-進(jìn)價)
(1)①求關(guān)于的函數(shù)解析式(不要求寫出自變量的取值范圍)
②該商品進(jìn)價是_________元/件;當(dāng)售價是________元/件時,周銷售利潤最大,最大利潤是__________元
(2)由于某種原因,該商品進(jìn)價提高了元/件,物價部門規(guī)定該商品售價不得超過65元/件,該商店在今后的銷售中,周銷售量與售價仍然滿足(1)中的函數(shù)關(guān)系.若周銷售最大利潤是1400元,求的值
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在平面直角坐標(biāo)系xOy中,一次函數(shù)y=﹣2x的圖象與反比例函數(shù)y=的圖象的一個交點(diǎn)為A(﹣1,n)
(1)求反比例函數(shù)y=的表達(dá)式.
(2)若兩函數(shù)圖象的另一交點(diǎn)為B,直接寫出B的坐標(biāo).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知拋物線y=-x2+4x+5.
(1)用配方法將y=-x2+4x+5化成y=a(x﹣h)2+k的形式;
(2)指出拋物線的開口方向、對稱軸和頂點(diǎn)坐標(biāo);
(3)若拋物線上有兩點(diǎn)A(x1,y1),B(x2,y2),如果x1>x2>2,試比較y1與y2的大小.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某商場舉辦抽獎活動,規(guī)則如下:在不透明的袋子中有2個紅球和2個黑球,這些球除顏色外都相同,顧客每次摸出一個球,若摸到紅球,則獲得1份獎品,若摸到黑球,則沒有獎品。
(1)如果小芳只有一次摸球機(jī)會,那么小芳獲得獎品的概率為 ;
(2)如果小芳有兩次摸球機(jī)會(摸出后不放回),求小芳獲得2份獎品的概率。(請用“畫樹狀圖”或“列表”等方法寫出分析過程)
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在平面直角坐標(biāo)系中,點(diǎn)為坐標(biāo)原點(diǎn),拋物線與軸交于、兩點(diǎn),頂點(diǎn)在軸的正半軸上,且.
(1)如圖①,求拋物線的解析式;
(2)如圖②,連接,過點(diǎn)作的平行線,交第四象限的拋物線于點(diǎn),求點(diǎn)的坐標(biāo);
(3)在(2)的條件下,點(diǎn)在第四象限的拋物線上,過點(diǎn)作于點(diǎn),直線交軸于點(diǎn),過點(diǎn)作軸的垂線,垂足為,點(diǎn)在的延長線上,連接、,且,若,求點(diǎn)的坐標(biāo).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com