【題目】如圖,點A(m6),B(n1)在反比例函數(shù)圖象上,ADx軸于點DBCx軸于點C,DC=5

(1)mn的值并寫出反比例函數(shù)的表達式;

(2)時,直接寫出的取值范圍

【答案】(1),y=(2)0<y≤2.

【解析】

(1)根據(jù)題意列出關(guān)于mn的方程組,求出方程組的解得到mn的值,確定出AB坐標,設(shè)出反比例函數(shù)解析式,將A坐標代入即可確定出解析式;

(2)x=3代入反比例解析式求出y的值,再根據(jù)反比例函數(shù)的性質(zhì)即可得.

(1)由題意得:,解得:

A(1,6),B(61),

設(shè)反比例函數(shù)表達式為y=,

A(16)代入得:k=6,

則反比例表達式為y=;

(2)x=3時,y==2,

又當x>0時,y隨著x的增大而減小,

所以當x時,的取值范圍為0<y≤2.

練習冊系列答案
相關(guān)習題

科目:初中數(shù)學 來源: 題型:

【題目】.霧霾天氣已經(jīng)成為人們普遍關(guān)注的話題,霧霾不僅僅會影響人們的出行,還影響著人們的健康,但是人們到底對霧霾了解多少呢?帶著這種思考,某學校九年級綜合實踐小組的同學以“霧霾天氣的主要成因”為主題,隨機調(diào)查了本市部分市民的觀點(分四類:A類工業(yè)污染;B類汽車尾氣排放;C類燃煤問題;D類其他原因.調(diào)查的每名市民只選擇一種類別),并對調(diào)查結(jié)果進行錄入整理,繪制了如下兩幅不完整的統(tǒng)計圖.

請根據(jù)圖中提供的信息解答下列問題:
(1)求出本次調(diào)查的市民人數(shù),并補全條形統(tǒng)計圖.
(2)估計該市800萬名市民中持有A、B兩類看法的總?cè)藬?shù).
(3)結(jié)合本次調(diào)查結(jié)果,請你給出一條“為減少霧霾天氣發(fā)生”的合理化的建議.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】保障房建設(shè)是民心工程,某市從2012年開始加快保障房建設(shè)進程,現(xiàn)統(tǒng)計了該市2012年到2016年5月新建保障房情況,繪制成如圖所示的折線統(tǒng)計圖和不完整的條形統(tǒng)計圖.

(1)小麗看了統(tǒng)計圖后說:“該市2015年新建保障房的套數(shù)比2014年少了.”你認為小麗說法正確嗎?請說明理由;
(2)求補全條形統(tǒng)計圖;
(3)求這5年平均每年新建保障房的套數(shù).

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖1,點為線段上一點,一副直角三角板的直角頂點與點重合,直角邊、在線段上,

1)將圖1中的三角板繞著點沿順時針方向旋轉(zhuǎn)到如圖2所示的位置,若,則________;猜想的數(shù)量關(guān)系為________

2)將圖1中的三角板繞著點沿逆時針方向按每秒的速度旋轉(zhuǎn)一周,三角板不動,請問幾秒時所在的直線平分

3)將圖1中的三角板繞著點沿逆時針方向按每秒的速度旋轉(zhuǎn)一周,同時三角板繞著點沿順時針方向按每秒的速度旋轉(zhuǎn)(隨三角板停止而停止),請計算幾秒時的角分線共線.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】把一副撲克牌中的三張黑桃牌(它們的正面數(shù)字分別為3、4、5)洗勻后正面朝下放在桌面上.小王和小李玩摸牌游戲,游戲規(guī)則如下:先由小王隨機抽取一張牌,記下牌面數(shù)字后放回,洗勻后正面朝下,再由小李隨機抽取一張牌,記下牌面數(shù)字.當兩張牌的牌面數(shù)字相同時,小王贏;當兩張牌的牌面數(shù)字不同時,小李贏.現(xiàn)請你分析游戲規(guī)則對雙方是否公平,并說明理由.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】某文化用品商店用2000元購進一批學生書包,面市后發(fā)現(xiàn)供不應(yīng)求,商店又購進第二批同樣的書包,所購數(shù)量是第一批購進數(shù)量的3倍,但單價貴了4元,結(jié)果第二批用了6300元.
(1)求第一批購進書包的單價是多少元?
(2)若商店銷售這兩批書包時,每個售價都是120元,全部售出后,商店共盈利多少元?

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,,PAB的平分線與CBA的平分線相交于E,CE的延長線交APD,求證:

1AB=AD+BC

2)若BE=3,AE=4,求四邊形ABCD的面積.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,點A,B,C分別是⊙O上的點,∠B=60°,AC=3,CD是⊙O的直徑,P是CD延長線上的一點,且AP=AC.

(1)求證:AP是⊙O的切線;
(2)求PD的長.

查看答案和解析>>

科目:初中數(shù)學 來源: 題型:

【題目】如圖,△ABC向右平移3個單位長度,再向上平移2個單位長度,可以得到.

(1)畫出平移后的;

(2)寫出三個頂點的坐標;

(3)已知點Px軸上,、P為頂點的三角形面積為4,求點P的坐標.

查看答案和解析>>

同步練習冊答案