【題目】如圖1,在△ADC中,,,將△ADC沿直線AC對折得△ABC,點(diǎn)E為AB邊上一動點(diǎn)(與點(diǎn)A,B不重合),連接CE,將射線CE繞點(diǎn)C順時針旋轉(zhuǎn)120°,交射線AD于點(diǎn)F.
(1)求的長度;
(2)如圖2,當(dāng)E為AB中點(diǎn)時,求CF的長度;
(3)用等式表示線段AE,AF與AC之間的數(shù)量關(guān)系,并加以證明.
【答案】(1);(2)CF的長為;(3),詳見解析.
【解析】
(1)過點(diǎn)D作DP⊥AC,垂足為P ,利用等腰三角形的性質(zhì)和直角三角形的性質(zhì)求出,,再利用勾股定理進(jìn)行計算即可.
(2)作CH⊥AF于點(diǎn)H, CG⊥AB于點(diǎn)G ,根據(jù)題意得到△ADC≌△ABC,再利用利用等腰三角形的性質(zhì)和直角三角形的性質(zhì)得到△CFH≌△CEG ,再根據(jù)勾股定理即可解答;
(3)先由(2)證明Rt△ACH≌Rt△ACG ,再利用三角函數(shù)即可解答.
解:(1)如圖1, 過點(diǎn)D作DP⊥AC,垂足為P
∵,
∴,
∴
∴;
(2)如圖2,作CH⊥AF于點(diǎn)H, CG⊥AB于點(diǎn)G
∴
由題意,得△ADC≌△ABC
∴,
∵
∴,
∵
∴
∴△CFH≌△CEG
∴
在Rt△CBG中,,
∴,
在Rt△CEG中,
∴
∴CF的長為;
(3)線段AE,AF與AC之間的數(shù)量關(guān)系為:
證明如下:
由(2)得△CFH≌△CEG
∴
∵,
∴Rt△ACH≌Rt△ACG
∴
在Rt△ACG中,
∴
∴.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】在迎接中華人民共和國成立70周年期間,國貨商場舉行了商品團(tuán)購促銷活動,對原售價每套80元的A品牌服裝給出如下優(yōu)惠條件:若一次性購買不超過10套,則每套售價為80元;若一次性購買多于10套,每增加1套,則每套售價都減少2元,但不低于50元.
(1)若一次性購買A品牌服裝x套,所用資金y元,求y與x的函數(shù)關(guān)系式,并寫出x的取值范圍;
(2)某校九年(1)班為參加國慶70周年聯(lián)歡晚會,成立了“歌唱祖國”合唱隊,隊長小紅利用國貨商場促銷活動期間為合唱隊的同學(xué)每人購買一套A品牌服裝作為隊服,支付了1200元.求該校九年(1)班合唱隊的人數(shù).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】2019年4月23日是第二十四個“世界讀書日“.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:
(1)求本次比賽獲獎的總?cè)藬?shù),并補(bǔ)全條形統(tǒng)計圖;
(2)求扇形統(tǒng)計圖中“二等獎”所對應(yīng)扇形的圓心角度數(shù);
(3)學(xué)校從甲、乙、丙、丁4位一等獎獲得者中隨機(jī)抽取2人參加“世界讀書日”宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,在△ABC中,∠ACB=90°,AC=BC=CD,∠ACD=α,將線段CD繞點(diǎn)C順時針旋轉(zhuǎn)90°得到線段CE,連接DE,AE,BD.
(1)依題意補(bǔ)全圖形;
(2)判斷AE與BD的數(shù)量關(guān)系與位置關(guān)系并加以證明;
(3)若60°<α≤110°,AB=4,AE與BD相交于點(diǎn)G,直接寫出點(diǎn)G到直線AB的距離d的取值范圍.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】請閱讀下列材料:
問題:如圖1,在等邊三角形ABC內(nèi)有一點(diǎn)P,且PA=2,PB=,PC=1、求∠BPC度數(shù)的大小和等邊三角形ABC的邊長.
小剛同學(xué)的思路是:將△BPC繞點(diǎn)B逆時針旋轉(zhuǎn)60°,畫出旋轉(zhuǎn)后的圖形(如圖2),連接PP′,可得△P′PC是等邊三角形,而△PP′A又是直角三角形(由勾股定理的逆定理可證),所以∠APB=150°,而∠BPC=∠AP′B=150°,進(jìn)而求出等邊△ABC的邊長為,問題得到解決.
請你參考小剛同學(xué)的思路,探究并解決下列問題:
如圖3,在正方形ABCD內(nèi)有一點(diǎn)P,且PA=,BP=2,PC=.求∠BPC度數(shù)的大小和正方形ABCD的邊長.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某中學(xué)有九百多名師生外出參加社會實(shí)踐活動,準(zhǔn)備租某種客車若干輛.如果每輛車剛好坐滿(即每個人都剛好有一個座位),就會余下14個人;如果多準(zhǔn)備一輛車,那么每輛車剛好都空1個座位,則這種客車每輛的乘客座位有_____個.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖所示,將矩形ABCD繞點(diǎn)A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于( )
A. 20° B. 30° C. 40° D. 50°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時,;④;⑤若,且,則.其中正確的有( )
A.2個B.3個C.4個D.5個
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】直線分別與x軸、y軸相交與點(diǎn)M、N,邊長為2的正方形OABC一個頂點(diǎn)O在坐標(biāo)系的原點(diǎn),直線AN與MC相交與點(diǎn)P,若正方形繞著點(diǎn)O旋轉(zhuǎn)一周,則點(diǎn)P到點(diǎn)(0,2)長度的最小值是( )
A.B.C.D.1
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權(quán)舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com