【題目】如圖,直線y=2x+8分別交x軸,y軸于點A,B,直線yx+3y軸于點C,兩直線相交于點D

1)求點D的坐標(biāo);

2)如圖2,過點AAEy軸交直線yx+3于點E,連接ACBE.求證:四邊形ACBE是菱形;

3)如圖3,在(2)的條件下,點F在線段BC上,點G在線段AB上,連接CG,FG,當(dāng)CG=FG,且∠CGF=ABC時,求點G的坐標(biāo).

【答案】1)點D坐標(biāo)(2,4);(2)證明見詳解;(3)點G(,)

【解析】

(1)兩個解析式組成方程組,可求交點D坐標(biāo);
(2)先求出點A,點B,點E,點C坐標(biāo),由兩點距離公式可求BC=AE=AC=BE=5,可證四邊形ACBE是菱形;
(3)由“AAS”可證ACGBGF,可得BG=AC=5,由兩點距離公式可求點G坐標(biāo).

解:(1)根據(jù)題意可得:,

解得:,

∴點D坐標(biāo)(24)

2)∵直線y=2x+8分別交x軸,y軸于點A,B

∴點B(0,8),點A(40)

∵直線yx+3y軸于點C,

∴點C(0,3)

AEy軸交直線yx+3于點E

∴點E(4,5)

∵點B(08),點A(40),點C(0,3),點E(4,5),

BC=5,AE=5,AC5BE5,

BC=AE=AC=BE,

∴四邊形ACBE是菱形;

3)∵BC=AC,

∴∠ABC=CAB

∵∠CGF=ABC,∠AGF=ABC+BFG=AGC+CGF,

∴∠AGC=BFG,且FG=CG,∠ABC=CAB,

∴△ACG≌△BGF(AAS),

BG=AC=5,

設(shè)點G(a,﹣2a+8),

(2a+88)2+(a0)2=52

a=±,

∵點G在線段AB上,

a,

∴點G(,82)

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形中ABCD中,E,F(xiàn)分別是AB,CD的中點,P為對角線AC延長線上的任意一點,PFADM,PEBCN,EFMNK.

求證:K是線段MN的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在扇形OAB中,∠AOB=90°,半徑OA=2 ,將扇形OAB沿過點B的直線折疊,點O恰好落在 上的點D處,折痕交OA于點C,則陰影部分的面積是________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】小明和小亮玩一種游戲:三張大小,質(zhì)地都相同的卡片上分別標(biāo)有數(shù)字1,23,現(xiàn)將標(biāo)有數(shù)字的一面朝下,小明從中任意抽取一張,記下數(shù)字后放回洗勻,然后小亮從中任意抽取一張,計算小明和小亮抽得的兩個數(shù)字之和,如果和為奇數(shù),則小明勝,若和為偶數(shù)則小亮勝.

1)用列表或畫樹狀圖等方法,列出小明和小亮抽得的數(shù)字之和所有可能出現(xiàn)的情況.

2)請判斷該游戲?qū)﹄p方是否公平?并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在矩形ABCD中,AB=3,點E為邊CD上一點,將△ADE沿AE所在直線翻折,得到△AFE,點F恰好是BC的中點,MAF上一動點,作MNADN,則BM+AN的最小值為____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,某同學(xué)把一塊三角形的玻璃打碎成了三塊,現(xiàn)在要到玻璃店去配一塊完全一樣的玻璃,那么最省事的辦法是(

A.帶①去B.帶②去C.帶③去D.帶①和②去

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,四邊形ABCD中,∠B=90°, AB//CD,MBC邊上的一點,AM平分∠BADDM平分∠ADC,

求證:(1) AMDM;

(2) MBC的中點.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知在△ABC中,ABAC,射線BMBN在∠ABC內(nèi)部,分別交線段AC于點GH

1)如圖1,若∠ABC60°,∠MBN30°,作AEBN于點D,分別交BC、BM于點E、F

求證:∠1=∠2;

如圖2,若BF2AF,連接CF,求證:BFCF;

2)如圖3,點EBC上一點,AEBM于點F,連接CF,若∠BFE=∠BAC2CFE,求的值.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,二次函數(shù)y=ax2+bx+c(a≠0)的大致圖象如圖所示,①abc<0,②2a+b>0,③a-b+c<0,④b2>4ac,⑤關(guān)于x的方程ax2+bx+c-2=0沒有實數(shù)根.則下列結(jié)論正確的有______.(填序號)

查看答案和解析>>

同步練習(xí)冊答案