【題目】設點A(x1 , y1)和點B(x2 , y2)是反比例函數(shù)y= 圖象上的兩點,當x1<x2<0時,y1>y2 , 則一次函數(shù)y=﹣2x+k的圖象不經(jīng)過的象限是( )
A.第一象限
B.第二象限
C.第三象限
D.第四象限
【答案】C
【解析】解:
∵當x1<x2<0時,y1>y2 ,
∴反比例函數(shù)y= 圖象上,y隨x的增大而減小,
∴圖象在一、三象限,如圖1,
∴k>0,
∴一次函數(shù)y=﹣2x+k的圖象經(jīng)過二、四象限,且與y軸交于正半軸,
∴一次函數(shù)y=﹣2x+k的圖象經(jīng)過一、二、四象限,如圖2,
故選C.
【考點精析】關于本題考查的反比例函數(shù)的性質(zhì),需要了解性質(zhì):當k>0時雙曲線的兩支分別位于第一、第三象限,在每個象限內(nèi)y值隨x值的增大而減; 當k<0時雙曲線的兩支分別位于第二、第四象限,在每個象限內(nèi)y值隨x值的增大而增大才能得出正確答案.
科目:初中數(shù)學 來源: 題型:
【題目】云南地區(qū)地震發(fā)生后,市政府籌集了必需物資120噸打算運往災區(qū),現(xiàn)有甲、乙、丙三種車型供選擇,每輛車的運載能力和運費如下表所示:(假設每輛車均滿載)
(1)若全部物資都用甲、乙兩種車型來運送,需運費8200元,問分別需甲、乙兩種車型各幾輛?
(2)為了節(jié)省運費,市政府打算用甲、乙、丙三種車型同時參與運送,已知它們的總輛數(shù)為14輛,你能求出這三種車型分別有多少輛嗎?此時的運費又是多少元?
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,反比例函數(shù)y= 與一次函數(shù)y=ax+b的圖象交于點A(2,2)、B( ,n).
(1)求這兩個函數(shù)解析式;
(2)將一次函數(shù)y=ax+b的圖象沿y軸向下平移m個單位,使平移后的圖象與反比例函數(shù)y= 的圖象有且只有一個交點,求m的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖①,O為直線AB上一點,過點O作射線OC,使∠BOC=110°.將一三角尺的直角頂點放在點O處(∠OMN=30°),一邊OM在射線OB上,另一邊ON在直線AB的下方.
(1)將圖①中的三角尺繞點O逆時針旋轉至圖②,使一邊OM在∠BOC的內(nèi)部,且恰好平分∠BOC,求∠BON的度數(shù);
(2)將圖①中的三角尺繞點O以每秒5°的速度按逆時針方向旋轉一周,在旋轉的過程中,第t秒時,直線ON恰好平分銳角∠AOC,則t的值為________(直接寫出結果);
(3)將圖①中的三角尺繞點O順時針旋轉至圖③,使ON在∠AOC的內(nèi)部,請?zhí)骄俊?/span>AOM與∠NOC的數(shù)量關系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】(10分)如圖,在矩形ABCD中,E,F(xiàn)為BC上兩點,且BE=CF,連接AF,DE交于點O.
求證:(1)△ABF≌△DCE;
(2)△AOD是等腰三角形.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】在數(shù)-5,1,-3,5,-2中任取三個數(shù)相乘,其中最大的積是a,最小的積是b.
(1)求a,b的值;
(2)若|x+a|+|y-b|=0,求(x+y)÷(x-y)的值.
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】已知二次函數(shù)y=ax2+bx+c(a≠0)的圖象如圖所示,并且關于x的一元二次方程ax2+bx+c﹣m=0有兩個不相等的實數(shù)根,下列結論: ①b2﹣4ac<0;②abc>0;③a﹣b+c<0;④m>﹣2,
其中,正確的個數(shù)有( )
A.1
B.2
C.3
D.4
查看答案和解析>>
科目:初中數(shù)學 來源: 題型:
【題目】如圖,點C在線段AB上,AC=6cm,MB=10cm,點M、N分別為AC、BC的中點.
(1)求線段BC的長;
(2)求線段MN的長;
(3)若C在線段AB延長線上,且滿足AC﹣BC=b cm,M,N分別是線段AC,BC的中點,你能猜想MN的長度嗎?請寫出你的結論(不需要說明理由).
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報平臺 | 網(wǎng)上有害信息舉報專區(qū) | 電信詐騙舉報專區(qū) | 涉歷史虛無主義有害信息舉報專區(qū) | 涉企侵權舉報專區(qū)
違法和不良信息舉報電話:027-86699610 舉報郵箱:58377363@163.com