【題目】如圖,等腰直角三角形的直角頂點(diǎn)在第一象限,頂點(diǎn)、分別在函數(shù)圖像的兩個(gè)分支上,且經(jīng)過原點(diǎn),軸相交于點(diǎn),連接,已知平分四邊形的面積.

(1)證明::

(2)求點(diǎn)的坐標(biāo).

【答案】(1)見解析 (2) A(-2,4)

【解析】1)根據(jù)反比例函數(shù)圖象的對稱性和三角線的面積公式得到SABD=2SACD.即BD=2CD;

2)如圖,過點(diǎn)BBEx軸于E過點(diǎn)CCFxF,連接OC,構(gòu)建全等三角形△OBE≌△COF,結(jié)合該全等三角形的對應(yīng)邊相等得到BE=OF,OE=CF,==2推知BE=2OE.設(shè)OE=aBE=2a,所以Ba,﹣2a),根據(jù)反比例函數(shù)圖象上點(diǎn)的坐標(biāo)特征和反比例函數(shù)圖象的對稱性來求點(diǎn)A的坐標(biāo)即可.

1∵函數(shù)y=﹣圖象關(guān)于原點(diǎn)對稱,OA=OB,SAOD=SBOD

AD平分四邊形AODC的面積SAOD=SACD,SABD=2SACD,BD=2CD;

2)如圖過點(diǎn)BBEx軸于E,過點(diǎn)CCFxF連接OC,則∠BEO=OFC=90°.

∵△ABC是等腰直角三角形,OA=OB∴∠BOC=90°,OC=AB=OB,∴∠BOE+∠COF=90°,而∠BOE+∠OBE=90°,∴∠OBE=COF

∵在△OBE與△COF,∴△OBE≌△COFAAS),BE=OFOE=CF

∵∠OBE=COF,cosOBE=cosCOF,=

==2BE=2CF,BE=2OE

設(shè)OE=a,BE=2aBa,﹣2a),a(﹣2a)=﹣8,解得a=2,B2,﹣4),A(﹣2,4).

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知,如圖A、B分別為數(shù)軸上的兩點(diǎn),A點(diǎn)對應(yīng)的數(shù)為-10,B點(diǎn)對應(yīng)的數(shù)為90.

(1)請寫出與A,B兩點(diǎn)距離相等的M點(diǎn)對應(yīng)的數(shù); 

(2)現(xiàn)在有一只電子螞蟻PB點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),設(shè)兩只電子螞蟻在數(shù)軸上的C點(diǎn)相遇,求C點(diǎn)對應(yīng)的數(shù)是多少.

(3)若當(dāng)電子螞蟻PB點(diǎn)出發(fā)時(shí),以3個(gè)單位/秒的速度向左運(yùn)動(dòng),同時(shí)另一只電子螞蟻Q恰好從A點(diǎn)出發(fā),以2個(gè)單位/秒的速度向右運(yùn)動(dòng),求經(jīng)過多長的時(shí)間兩只電子螞蟻在數(shù)軸上相距35個(gè)單位長度.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在直角坐標(biāo)系xOy中,已知A(6,0),B(8,6),將線段OA平移至CB,點(diǎn)D在x軸正半軸上(不與點(diǎn)A重合),連接OC,AB,CD,BD.

(1)寫出點(diǎn)C的坐標(biāo);
(2)當(dāng)△ODC的面積是△ABD的面積的3倍時(shí),求點(diǎn)D的坐標(biāo);
(3)設(shè)∠OCD=α,∠DBA=β,∠BDC=θ,判斷α、β、θ之間的數(shù)量關(guān)系,并說明理由.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,的面積為9,點(diǎn)的邊上運(yùn)動(dòng).作點(diǎn)關(guān)于原點(diǎn)的對稱點(diǎn),再以為邊作等邊.當(dāng)點(diǎn)的邊上運(yùn)動(dòng)一周時(shí),點(diǎn)隨之運(yùn)動(dòng)所形成的圖形面積為(

A. 3 B. 9 C. 27 D.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一個(gè)自然數(shù)的立方,可以分裂成若干個(gè)連續(xù)奇數(shù)的和,例如:23,33和43分別可以按如圖所示的方式“分裂”,則63“分裂”出的奇數(shù)中,最大的奇數(shù)是_____

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】已知:正方形ABCD的邊長為厘米,對角線AC上的兩個(gè)動(dòng)點(diǎn)E,F,點(diǎn)E從點(diǎn)A、點(diǎn)F從點(diǎn)C同時(shí)出發(fā),沿對角線以1厘米/秒的相同速度運(yùn)動(dòng),過EEHACRtACD的直角邊于H;過FFGACRtACD的直角邊于G,連接HG,EB.設(shè)HE,EF,F(xiàn)G,GH圍成的圖形面積為,AE,EB,BA圍成的圖形面積為(這里規(guī)定:線段的面積為).E到達(dá)C,F到達(dá)A停止.若E的運(yùn)動(dòng)時(shí)間為x秒,解答下列問題:

(1)如圖①,判斷四邊形EFGH是什么四邊形,并證明;

(2)當(dāng)0<x<8時(shí),求x為何值時(shí),;

(3)若的和,試用x的代數(shù)式表示y.(圖②為備用圖)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,AB是⊙O的切線,B為切點(diǎn),圓心在AC上,∠A=30°,D為 的中點(diǎn).
(1)求證:AB=BC;
(2)求證:四邊形BOCD是菱形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在數(shù)軸上,點(diǎn)A、B表示的數(shù)分別是-4、8(A、B兩點(diǎn)間的距離用AB表示),點(diǎn)M、N是數(shù)軸上兩個(gè)動(dòng)點(diǎn),分別表示數(shù)m、n

(1) AB=______個(gè)單位長度;若點(diǎn)MA、B之間,則|m+4|+|m-8|=___________

(2) |m+4|+|m-8|=20,求m的值

(3) 若點(diǎn)M、點(diǎn)N既滿足|m+4|+n=6,也滿足|n-8|+m=28,則m=________;n=________

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】一輛出租車從A地出發(fā),在一條東西走向的街道上往返,每次行駛的情況(記向東為正)記錄如下(x>5x<14,單位:m):

行駛次數(shù)

第一次

第二次

第三次

第四次

行駛情況

x

x

x﹣3

2(5﹣x)

行駛方向(填西”)

   

   

   

   

(1)請將表格補(bǔ)充完整;

(2)求經(jīng)過連續(xù)4次行駛后,這輛出租車所在的位置;

(3)若出租車行駛的總路程為41m,求第一次行駛的路程x的值.

查看答案和解析>>

同步練習(xí)冊答案