【題目】如圖,直線l1與直線交于點,直線l1分別交x軸、y軸于點A,BOB=2,直線l2x軸于點C.

1)求m的值及四邊形OBPC的面積;

2)求直線l1的解析式;

3)設(shè)點Q是直線l2上的一動點,當(dāng)以AC、Q為頂點的三角形的面積等于四邊形OBPC的面積時,求點Q的坐標.

【答案】1m2,四邊形OBPC的面積的面積為4;(2y1=x+2;(3)點Q的坐標為(,)或(.

【解析】

1)把Pm,4)代入y24x4可求出m2,則P點坐標為(24),然后根據(jù)B點坐標為(02)求出直線l1解析式,進而得到AC的坐標,然后根據(jù)四邊形OBPC的面積=SAPCSABO進行計算即可;

2)由(1)可得直線l1的解析式;

3)根據(jù)以AC、Q為頂點的三角形的面積等于四邊形OBPC的面積列出方程,求出Q點的縱坐標,即可解決問題.

解:(1)把Pm,4)代入y24x44m44,解得m2

P點坐標為(2,4),

由題意得,B點坐標為(0,2),

設(shè)直線l1解析式為:y1=kx+b(k≠0),

,解得:,

∴直線l1解析式為:y1=x+2,

當(dāng)y1=x+2=0時,解得:x=2,即A(-2,0),

當(dāng)時,解得:x=1,即C1,0),

∴四邊形OBPC的面積=SAPCSABO;

2)由(1)可得,直線l1解析式為:y1=x+2

3)設(shè)點Q的縱坐標為(n,m),

由題意得:,即,

解得:,

當(dāng)時,代入,即Q,),

當(dāng)時,代入,即Q),

綜上所示:點Q的坐標為(,)或(,.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,在平面直角坐標系中,直線l:y=﹣x+4y軸、x軸分別交于

E、F,邊長為2的等邊ABC,邊BCx軸上,將此三角形沿著x軸的正方向平移,在平移過程中,得到A1B1C1,當(dāng)點B1與原點重合時,解答下列問題:

(1)求出點A1的坐標,并判斷點A1是否在直線l上;

(2)求出邊A1C1所在直線的解析式;

(3)在坐標平面內(nèi)找一點P,使得以P、A1、C1、F為頂點的四邊形是平行四邊形,請直接寫出P點坐標.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,直線l1過點A(8,0)、B(0,﹣5),直線l2過點C(0,﹣1),l1、l2相交于點D,且△DCB的面積等于8.

(1)求點D的坐標;

(2)點D的坐標是哪個二元一次方程組的解.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知拋物線y1=-2x2+2,直線y2=2x+2,當(dāng)x任取一值時,x對應(yīng)的函數(shù)值分別為y1、y2.若y1≠y2,取y1、y2中的較小值記為M;若y1=y2,記M=y1=y2.例如:當(dāng)x=1時,y1=0,y2=4,y1<y2,此時M=0.

下列判斷:

①當(dāng)x>0時,y1>y2
當(dāng)x0時,x值越大,M值越;

使得M大于2x值不存在;
使得M=1x值是.其中正確的個數(shù)是( )

A. 1個 B. 2個 C. 3個 D. 4個

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】中考低于測試前,某區(qū)教育局為了了解選報引體向上的九年級男生的成績情況,隨機抽查了本區(qū)部分選報引體向上項目的九年級男生的成績,并將測試得到的成績繪成了下面兩幅不完整的統(tǒng)計圖.

請你根據(jù)圖中的信息,解答下列問題:

Ⅰ)寫出扇形圖中a=  %,本次抽測中,成績?yōu)?/span>6個的學(xué)生有  名.

Ⅱ)求這次抽測中,測試成績的平均數(shù),眾數(shù)和中位數(shù);

Ⅲ)該區(qū)體育中考選報引體向上的男生共有1800人,如果體育中考引體向上達6個以上(含6個)得滿分,請你估計該區(qū)體育中考選報引體向上的男生能獲得滿分的有多少名?

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】下列說法不正確的是( 。

A. 某種彩票中獎的概率是,買1000張該種彩票一定會中獎

B. 了解一批電視機的使用壽命適合用抽樣調(diào)查

C. 若甲組數(shù)據(jù)方差=0.39,乙組數(shù)據(jù)方差=0.27,則乙組數(shù)據(jù)比甲組數(shù)據(jù)穩(wěn)定

D. 在一個裝有白球和綠球的袋中摸球,摸出黑球是不可能事件

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,防洪大堤的橫截面ABGH是梯形,背水坡AB的坡度i=1:(垂直高度AE與水平寬度BE的比),AB=20米,BC=30米,身高為1.7米的小明(AM=1.7米)站在大堤A點(M,A,E三點在同一條直線上),測得電線桿頂端D的仰角∠a=20°.

(1)求背水坡AB的坡角;

(2)求電線桿CD的高度.(結(jié)果精確到個位,參考數(shù)據(jù)sin20°0.3,cos20°0.9,tan20°0.4,1.7)

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,O是等邊內(nèi)一點繞點C按順時針方向旋轉(zhuǎn),連接已知

求證:是等邊三角形;

當(dāng),試判斷的形狀,并說明理由;

探究:當(dāng)為多少度時,是等腰三角形.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】每年的6月5日為世界環(huán)保日,為了提倡低碳環(huán)保,某公司決定購買10臺節(jié)省能源的新設(shè)備,現(xiàn)有甲、乙兩種型號的設(shè)備可供選購. 經(jīng)調(diào)查:購買3臺甲型設(shè)備比購買2臺乙型設(shè)備多花16萬元,購買2臺甲型設(shè)備比購買3臺乙型設(shè)備少花6萬元.

(1)求甲、乙兩種型號設(shè)備的價格;

(2)該公司經(jīng)預(yù)算決定購買節(jié)省能源的新設(shè)備的資金不超過110萬元,你認為該公司有哪幾種購買方案;

(3)在(2)的條件下,已知甲型設(shè)備的產(chǎn)量為240噸/月,乙型設(shè)備的產(chǎn)量為180噸/月.若每月要求總產(chǎn)量不低于2040噸,為了節(jié)約資金,請你為該公司設(shè)計一種最省錢的購買方案.

查看答案和解析>>

同步練習(xí)冊答案