【題目】某商店經(jīng)銷一種成本為每千克20元的水產(chǎn)品,據(jù)市場分析,若按每千克30元銷售,一個月能售出500kg,銷售單價每漲1元,月銷售量就減少10kg,解答以下問題.

(1)當(dāng)銷售單價定位每千克35元時,銷售量為 ,月銷售利潤為 ;

(2)商店想在月銷售成本不超過6000元的情況下,使得月銷售利潤達到8000元,應(yīng)漲價多少;

(3)設(shè)漲價了x元,月銷售利潤為y元,請求出y與x的函數(shù)關(guān)系式,商店想使得月銷售利潤達到最大,銷售單價應(yīng)為多少.請算出最大利潤值.

【答案】1450kg6750元;(2)漲價10元;(3y=;銷售單價定為50/千克,能獲得最大利潤為9000元.

【解析】

1)根據(jù)題意直接計算得出即可;
2)根據(jù)利潤=銷售量×(售價-成本)列方程(30+x-20)(500-10x=8000,解方程后要檢驗是否符合題意(銷售成本不超過6000元);
3)根據(jù)利潤=銷售量×(售價-成本)列出函數(shù)解析式y=30+x-20)(500-10x),再配方得y=,即可求解.

解:(1)銷售量:500-35-30×10=450kg);
銷售利潤:450×35-20=450×15=6750(元);

2)設(shè)漲價了x元,則,
則(30+x-20)(500-10x=8000,
解得:x1=10x2=30,

由于水產(chǎn)品銷售量不超過6000÷20=300kg
當(dāng)x1=10時,銷售量=500-10×10=400kg300kg,舍去,
當(dāng)x2=30時,銷售量=500-10×30=200kg300kg,符合題意.
答:要使月銷售利潤達到8000,應(yīng)漲價10元;
3)設(shè)漲價了x元,則,

y=30+x-20)(500-10x=,
∴當(dāng)x=20時,y取得最大值,為9000元,
答:銷售單價定為50/千克,能獲得最大利潤為9000元.

練習(xí)冊系列答案
相關(guān)習(xí)題

科目:初中數(shù)學(xué) 來源: 題型:

【題目】2019423日是第二十四個世界讀書日.某校組織讀書征文比賽活動,評選出一、二、三等獎若干名,并繪成如圖所示的條形統(tǒng)計圖和扇形統(tǒng)計圖(不完整),請你根據(jù)圖中信息解答下列問題:

1)求本次比賽獲獎的總?cè)藬?shù),并補全條形統(tǒng)計圖;

2)求扇形統(tǒng)計圖中二等獎所對應(yīng)扇形的圓心角度數(shù);

3)學(xué)校從甲、乙、丙、丁4位一等獎獲得者中隨機抽取2人參加世界讀書日宣傳活動,請用列表法或畫樹狀圖的方法,求出恰好抽到甲和乙的概率.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖所示,將矩形ABCD繞點A順時針旋轉(zhuǎn)到矩形AB′C′D′的位置,旋轉(zhuǎn)角為α(0°<α<90°).若∠1=110°,則α等于(  )

A. 20° B. 30° C. 40° D. 50°

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】二次函數(shù)圖象如圖,下列結(jié)論:①;②;③當(dāng)時,;④;⑤若,且,則.其中正確的有(

A.2B.3C.4D.5

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知正方形ABCD的邊長為,對角線AC、BD交于點O,點EBC上,且CE=2BE,過B點作BFAE于點F,連接OF,則線段OF的長度為_________.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,已知菱形ABCD的一個內(nèi)角∠BAD=80°,對角線AC,BD相交于點O,點EAB上,且BE=BO,則∠EOA=___________°.

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖,一次函數(shù)y=mx+5的圖象與反比例函數(shù)y= (k≠0)在第一象限的圖象交于A(1,n)和B(4,1)兩點,過點A作y軸的垂線,垂足為M.

(1)求一次函數(shù)和反比例函數(shù)的解析式;

(2)求△OAM的面積S;

(3)在y軸上求一點P,使PA+PB最。

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】直線分別與x軸、y軸相交與點M、N,邊長為2的正方形OABC一個頂點O在坐標系的原點,直線ANMC相交與點P,若正方形繞著點O旋轉(zhuǎn)一周,則點P到點(0,2)長度的最小值是( )

A.B.C.D.1

查看答案和解析>>

科目:初中數(shù)學(xué) 來源: 題型:

【題目】如圖是一塊含30°(即∠CAB30°)角的三角板和一個量角器拼在一起,三角板斜邊AB與量角器所在圓的直徑MN重合,其量角器最外緣的讀數(shù)是從N點開始(即N點的讀數(shù)為0),現(xiàn)有射線CP繞著點CCA順時針以每秒2度的速度旋轉(zhuǎn)到與ACB外接圓相切為止.在旋轉(zhuǎn)過程中,射線CP與量角器的半圓弧交于E

1)當(dāng)射線CPABC的外接圓相切時,求射線CP旋轉(zhuǎn)度數(shù)是多少?

2)當(dāng)射線CP分別經(jīng)過ABC的外心、內(nèi)心時,點E處的讀數(shù)分別是多少?

3)當(dāng)旋轉(zhuǎn)7.5秒時,連接BE,求證:BECE

查看答案和解析>>

同步練習(xí)冊答案