【題目】如圖,在平行四邊形ABCD中,E為AB邊上的中點(diǎn),連接DE并延長,交CB的延長線于點(diǎn)F.
求證:;
若平行四邊形ABCD的面積為32,試求四邊形EBCD的面積.
【答案】(1)詳見解析;(2)24.
【解析】
(1)依據(jù)中點(diǎn)的定義可得到AE=BE,然后依據(jù)平行線的性質(zhì)可得到∠ADE=∠F,接下來,依據(jù)AAS可證明△ADE≌△BFE,最后,依據(jù)全等三角形的性質(zhì)求解即可;
(2)過點(diǎn)D作DM⊥AB與M,則DM同時(shí)也是平行四邊形ABCD的高,先求得△AED的面積,然后依據(jù)S四邊形EBCD=S平行四邊形ABCD-S△AED求解即可.
是AB邊上的中點(diǎn),
,
,
,
在和中,,,,
≌,
;
(2)過點(diǎn)D作與M,
∵AB//DC,
∴DM同時(shí)也是平行四邊形ABCD的高,
,
.
年級 | 高中課程 | 年級 | 初中課程 |
高一 | 高一免費(fèi)課程推薦! | 初一 | 初一免費(fèi)課程推薦! |
高二 | 高二免費(fèi)課程推薦! | 初二 | 初二免費(fèi)課程推薦! |
高三 | 高三免費(fèi)課程推薦! | 初三 | 初三免費(fèi)課程推薦! |
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知:和同一平面內(nèi)的點(diǎn).
(1)如圖1,若點(diǎn)在邊上過點(diǎn)作交于點(diǎn),作交于點(diǎn).根據(jù)題意,請?jiān)趫D1中補(bǔ)全圖形,并直接寫出與的數(shù)量關(guān)系;
(2)如圖2,若點(diǎn)在的延長線上,且,.請判斷與的位置關(guān)系并說明理由;
(3)如圖3,點(diǎn)是外部的一點(diǎn),過點(diǎn)作交直線于點(diǎn),作交直線于點(diǎn),請直接寫出與的數(shù)量關(guān)系,并圖3中補(bǔ)全圖形.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖,點(diǎn)P是∠AOB內(nèi)任意一點(diǎn),OP=6cm,點(diǎn)M和點(diǎn)N分別是射線OA和射線OB上的動點(diǎn),△PMN周長的最小值是6cm,則∠AOB的度數(shù)是( )
A.25°B.30°
C.60°D.45°
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】如圖1,已知∠A+∠E+∠F+∠C=540°.
(1)試判斷直線AB與CD的位置關(guān)系,并說明理由;
(2)如圖2,∠PAB=3∠PAQ,∠PCD=3∠PCQ,試判斷∠APC與∠AQC的數(shù)量關(guān)系,并說明理由.
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】為了鼓勵節(jié)能降耗,某市規(guī)定如下用電收費(fèi)標(biāo)準(zhǔn):用戶每月的用電量不超過120度時(shí),電價(jià)為x元/度;超過120度時(shí),不超過部分仍為x元/度,超過部分為y元/度.已知某用戶5月份用電115度,交電費(fèi)69元,6月份用電140度,付電費(fèi)94元.
(1)求x、y的值;
(2)若該用戶計(jì)劃7月份所付電費(fèi)不超過83元,問該用戶7月份最多可用電多少度?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】養(yǎng)牛場原有大牛30頭和小牛15頭,一天約用飼料675kg.一周后又購進(jìn)12頭大牛和5頭小牛,這時(shí)1天約用飼料940kg.飼養(yǎng)員李大叔估計(jì)每頭大牛1天約需飼料1820kg,每頭小牛1天約需飼料78kg,你能通過計(jì)算檢驗(yàn)他的估計(jì)嗎?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】某服裝店用8000元購進(jìn)一批襯衫,以58元/件的價(jià)格出售,很快售完,然后又用17600元購進(jìn)同款襯衫,購進(jìn)數(shù)量是第一次的2倍,購進(jìn)的單價(jià)比上一次每件多4元,服裝店仍按原售價(jià)58元/件出售,并且全部售完.
(1)該服裝店第一次購進(jìn)襯衫多少件?
(2)將該服裝店兩次購進(jìn)襯衫看作一筆生意,那么這筆生意是盈利還是虧損?求出盈利(或虧損)多少元?
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】已知,如圖,AB∥CD,直線EF分別交AB、CD于點(diǎn)E、F,EG平分∠AEF,FH平分∠EFD.求證:EG∥FH.
請完成以下證明過程:
證明:∵AB∥CD(已知)
∴∠AEF=∠EFD(__________________)
∵EG平分∠AEF,FH平分∠EFD(__________)
∴∠___=∠AEF,∠___= ∠EFD(____________)
∴∠_____=∠______(等量代換)
∴EG∥FH(__________________).
查看答案和解析>>
科目:初中數(shù)學(xué) 來源: 題型:
【題目】將若干個(gè)同樣大小的小長方形紙片拼成如圖形狀的大長方形(小長方形紙片長為,寬為),請你仔細(xì)觀察圖形,解答下列問題:
(1)與有怎樣的關(guān)系?
(2)圖中陰影部分的面積是大長方形面積的幾分之幾?
(3)請你仔細(xì)觀察圖中的一個(gè)陰影部分,根據(jù)它面積的不同表示方法寫出含字母、的一個(gè)等式.
查看答案和解析>>
湖北省互聯(lián)網(wǎng)違法和不良信息舉報(bào)平臺 | 網(wǎng)上有害信息舉報(bào)專區(qū) | 電信詐騙舉報(bào)專區(qū) | 涉歷史虛無主義有害信息舉報(bào)專區(qū) | 涉企侵權(quán)舉報(bào)專區(qū)
違法和不良信息舉報(bào)電話:027-86699610 舉報(bào)郵箱:58377363@163.com